14C-based Source Apportionment of Carbonaceous Aerosols in Switzerland for 2008 – 2012

1Department of Chemistry and Biochemistry, University of Bern, Switzerland
2Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen, Switzerland
3Laboratory of Ion Beam Physics, Swiss Federal Institute of Technology, Zürich, Switzerland
4University of Milano, Department of Environmental Science, Italy

peter.zotter@psi.ch
Radiocarbon in the environment

Equilibrium Concentration: $\frac{^{14}\text{C}}{^{12}\text{C}} \approx 10^{-12}$

Then: $^{14}\text{C} \rightarrow ^{14}\text{N} + e^- + \bar{\nu}$

$\tau_{1/2} = 5730$ years

Currie, 2004
Elemental Carbon (EC)
Organic Carbon (OC)
SOC

Modern 14C level
Depleted in 14C

14C half-life = 5730 years
Separation goals for 14C(EC):

1. Complete OC removal
2. Negligible charring
3. High EC recovery

New protocol Swiss_4S

- Oxygen-based
- Related to EUSAAR-2
- Water-extracted filters
Swiss_4S protocol

EC isolation: Four steps using water-extracted filters

S1/O2
Pure OC

S2/O2
Mixture of OC and EC

S3/He (EUSAAR_2)

S4/O2
Pure EC

Isolation of WINSOC for \(^{14}\text{C}\) measurement

Isolation of EC for \(^{14}\text{C}\) measurement

Laser: monitoring of EC losses and charring

Temperature

Carbon
14C analysis: accelerator mass spectrometry

- Synal et al. 2007,
- Ruff et al. 2007

Synal, 2013
Szidat et al., 2014
- **Focus:** winter-smog-episode days (PM10 > 50 μg/m³)
- 5 days per station and year for 2008 – 2013

→ **640 14C measurements**

→ **One of the world’s largest 14C dataset in aerosol research**
• OC is mostly non-fossil (~70% to ~95%)

• Traffic contribution to OC max. 30%

• EC_{nf}/EC: 40% - 50% for most stations

• Wood burning almost as important as traffic

• EC_{nf} „extreme“ values in Schächental (80%) and San Vittore (87%)
OC_{NF} vs. levoglucosan

- High correlation
- Small intercept

→ Major fraction of OC_{NF} from wood burning

OC_{NF} vs. potassium (K^+)

- Clearly different ratios for stations north and south of the Alps

→ More OC emitted in the south

→ Larger fraction of highly efficient wood burners (e.g. Pellet burners) in the north

Zotter et al. (2014)
Fossil fraction of EC

- No trend for most of the stations
- Decreases in Chiasso: ~65% to ~56%
- Decrease in Massongex: ~49% to ~43%

• Bern:
 - 2009-2013: from ~74% up to ~83%
 - But 2013 ~6% less fossil than 1999

\[14C \text{ results: Trends}\]

Zotter et al. (in prep.)

- Bern:
 - 2009-2013: from ~74% up to ~83%
 - But 2013 ~6% less fossil than 1999

\[14C \text{ results: Trends}\]

Zotter et al. (in prep.)
Fossil fraction of EC

Zotter et al. (in prep.)

- No trend for most of the stations
- Decreases in Chiasso: ~65% to ~56%
- Decrease in Massongex: ~49% to ~43%
- Bern:
 - 2009-2013: from ~74% up to ~83%
 - but 2013 ~6% less fossil than 1999
- Decrease in Zürich: ~66% to 59%
• Clear relationship between temperature and EC$_{NF}$
• Higher non-fossil contributions with lower temperatures
 → More wood-burning due to more residential heating
• Yearly cycle at the urban background station in Zürich
• August 2008 – July 2009; 2 – 3 filters per month
• OC_{NF} on average 70% - 95% with slightly higher values south of the Alps

• EC_{NF} on average 19% - 66% with extreme values in Alpine valleys up to 87%

• Wood burning is the major source of carbonaceous aerosols in Switzerland during winter smog episodes

• Larger fraction of highly efficient wood burners north of the Alps

• Clear yearly cycle for EC_{NF} in Zürich, but no seasonal variability for OC_{NF}
Thank you for your attention

This work was funded by:
the Swiss Federal Office for the Environment, inNet Monitoring AG, Liechtenstein and the Swiss cantons Basel-Stadt, Basel-Landschaft, Graubünden, Solothurn, Valais and Ticino
• Low spectral dependence of the b_{abs} from traffic ($\alpha_{TR} \sim 1$)
• Enhanced b_{abs} for wood burning in the near ultraviolet
• α_{TR} and α_{WB} have to be assumed a priori
Previous campaigns
- ZUR Jan.06
- MOL Jan.06
- REI Feb.06
- MAS Dec.06
- ROV Jan.05
- ROV Dec.05
- ROV Mar.05

- SIS
- ZUR
- MAG
- PAY

Spring and summer 2007 - 2008
- ZUR

\[Y = 1.003 \times X - 0.002 \]
\[r = 0.79 \]
• 14C results of EC used as reference to find “best” α-values

• Both methods correlate well ($r = 0.79$)

• $\alpha_{WB} = 1.4–1.7$ (lowest 1st and highest 3rd quartile) for $\alpha_{TR} = 0.9–1.1$
• Collect sample **continuously**.

• **Optical absorption** ~ change in ATN.

• Measure optical absorption **continuously** : $\lambda = 370$ to 950 nm.

• Convert **optical absorption** to **concentration of BC**:

 • $BC(t) = \frac{b_{abs}(t)}{\sigma}$

\[ATN = \ln \left(\frac{I_0}{I} \right) \]

\[b_{abs} \sim \Delta ATN / \Delta t \]
Aethalometer

- measures light absorption ($\lambda = 370, 470, 520, 590, 660, 880$ and 950 nm) from which the equivalent BC concentration can be deduced

Traffic emissions:

- contain mainly BC
- dominate absorption at IR-wavelengths
- exhibit only a weak wavelength dependence

Wood burning emissions:

- contain a significant number of light absorbing organic substances
- have an enhanced absorption in the UV range
- exhibit a strong wavelength dependence

\[b_{abs}(\lambda) \sim \lambda^{-\alpha} \quad \text{Ångstrom Exponent} \]

\[b_{abs}(\lambda) = b_{absTR}(\lambda) + b_{absWB}(\lambda) \]