Responses of healthy & diseased airway epithelia to primary and photo-chemically aged aerosols from wood combustion

M. Geiser¹, S. Allenbach¹, M. Krapf², E. Bruns², N. Baumlin³, U. Baltensperger², C. Sioutas⁴, M. Salathe³, J. Dommen²

¹University of Bern, Bern, CH
²Paul Scherrer Institute, Villigen, CH
³University of Miami, Miami, FL, USA
⁴University of Southern California, Los Angeles, CA, USA
Background and Aims

> Adverse health effects of inhaled fine and ultrafine particles
> Persons with pre-existing lung disease are more vulnerable

⇒ Which particle characteristics induce the biological effects?
⇒ What biological parameters cause susceptibility?

> Aerosols from wood combustion
> Effects due to different chemical composition but similar concentration of the particles
> In-vitro study simulating the situation in vivo
Experimental set-up

- Particle source
 - Log wood stove
- Conditioning gases (i.e., adjustment to 20% O₂, 5% CO₂)
- Bipolar particle charger (Kr-85)
- Gas denuder
- VACES – particle enrichment (Wang et al., AS&T 47, 2013)
 (versatile aerosol concentration enrichment system)
- Smog chamber
- Light sources
- Filter samples for chemical analysis
- Particle deposition & cell exposure chamber
 (Mertes et al., JAMPDD 26, 2013)
- Temperature control to 37°C
- Humidity control to 90%
- Particle counting and sizing instruments
- Pump
- Particle counting and sizing instruments
Methods
Particle deposition chamber

- Aerosol conditioning: 37°C, 85-95% RH
- Aerosol distribution: 12 delivery tubes
- Particle deposition: e-field: 4 kV/cm, alternating polarity: 1 Hz
- Total aerosol flow: 600 mL/min, 50 mL/min per tube
- Cell exposure: 12 cell cultures at air-liquid interface (ALI) on Transwell® inserts per plate
Cell culture models

> Re-differentiated human bronchial epithelial cells
 — Respiratory epithelium with mucus secreting, ciliated & basal cells = pseudostratified epithelium
 — Tissue with low cell turnover
 — Production & maintenance of air-liquid interface = established ALI
 — Normal and diseased (cystic fibrosis, CF) donors

> Human bronchial epithelial cell line BEAS-2B
 — Monolayers of a single, cuboidal cell type
 — Immortalized, proliferating cells
 — Submersed cultures; reduced cell culture medium for exposure at ALI
Exposure protocol and cell analysis

- Cell cultures on microporous filter inserts at ALI
- Single, short term (2h) exposure to aerosol
- Controls (untreated & filtered-air exposed)
- Cell analysis within 24h after exposure (acute)
- Biological markers
 - Cytotoxicity (necrosis: release of lactate dehydrogenase, LDH)
 - Inflammatory mediator release (cytokines: IL-6, IL-8)
Results
Composition of exhaust & particle dose

- Medium and high stove load:
 - Organic compounds dominant
 - Black carbon depending on stove load
 - Constant particle dose (∼270 ng/cm²)
Results
Cellular responses

> Cytotoxicity
 — Increase of cytotoxicity after particle exposure in all cell models
 — BEAS-2B cells are more sensitive than re-differentiated cells

> IL-6 release
 — Increase in BEAS-2B cells only

> IL-8 release
 — Trend to increased IL-8 release in all cell models
 — Different baseline release of IL-8 in cell models

> Cause-effect relationship
 — Evidence for correlation of necrosis with distinct particle constituents
Conclusion

Evidence for adverse effects of primary and aged particles from wood combustion on airway epithelia:

(i) Increase of cytotoxicity after particle exposure
(ii) Correlation of cytotoxicity and specific particle components
(iii) Release of cytokines dependent on cell model
(iv) Different responses of epithelial cell line and differentiated epithelial cells
Acknowledgements

> Core group Uni Bern
 - N. Jeannet, L. Künzi, S. Schneider, B. Kupferschmid

> Center for Atmospheric Science, University of Cambridge, Cambridge, UK
 - M. Kalberer

> Institute for Aerosol and Sensor Technology (IAST), Hochschule für Technik (FHNW), Windisch, CH
 - H. Burtscher, M. Fierz

> Swiss National Science Foundation (CR3213_140851)

> Federal Office for the Environment (FOEN)

> European Community’s Seventh Framework Programme (FP7/2007-2013), grant agreement no. 290605 (PSI-FELLOW)

> Lungenliga Schweiz