Background

Sulfur driven nucleation in diesel exhaust
- The amount of sulfuric acid is connected to volatile nucleation mode particle concentration
- Modeling studies lack of quantitative information on nucleation rate
- Dependence of nucleation rate J on gaseous sulfuric acid concentration $[\text{H}_2\text{SO}_4]$:
 $$ J \propto [\text{H}_2\text{SO}_4]^n $$
 where n, i.e. the nucleation slope varies depending on the theory
- Classical nucleation theory is currently the only one that provides the nucleation rate quantitatively
 - Parameterization of homogeneous binary water-sulfuric acid nucleation rate by Vehkamäki et al. (2002, 2003)
 - The nucleation slope is 5 or more

Exhaust sampling system

- Partial flow sampling with porous tube type primary diluter and ageing chamber
- Observed to mimic real-world nucleation of diesel exhaust
- Measured by Rönkkö et al. (2013):
 - Gaseous sulfuric acid concentrations in raw exhaust
 - Particle distributions after the ageing chamber

Model

Fluid dynamics

- Steady state finite volume method
- ANSYS FLUENT 14.0 CFD-solver
- Fluid flow, turbulence, heat, and gas transport modeling

Aerosol dynamics

- Modal aerosol dynamics code
 - Coupled with fluid dynamics modeling
- Transport equation of a moment M_k
 $$ \frac{\partial M_k}{\partial t} = -\nabla \cdot (M_k \mathbf{u}) + \nabla \cdot \left(\rho_{ij} D_{ij} \nu M_k \frac{M_k}{\rho_{ij}} \right) + \text{nucl}_k + \text{cond}_k + \text{coag}_k $$
 - Nucleation
 - Classical homogeneous binary H_2SO_4-H_2O nucleation rate multiplied by a correction factor
 - Condensation
 - Sulfuric acid, water, and a wide scale of hydrocarbons are considered as the condensing species
 - Coagulation
 - Coagulation between different modes

Simulation results

- Fitting the simulated particle distributions with the measured ones
 - Adjusting the correction factor \rightarrow number concentration
 - Adjusting the hydrocarbon amount in raw exhaust \rightarrow particle size

Conclusions

Correction factor

- High values
 \rightarrow The theory predicts too low concentrations
- Large variation
 \rightarrow May indicate that the use of classical nucleation theory is impractical to model the particle formation in vehicle exhaust
- Decreasing exponentially
 \rightarrow The nucleation slope may be overestimated
 \rightarrow Other compounds may participate in nucleation

References

Index

Contents