4. International ETH-Conference on

Nanoparticle Measurement

7. - 9. August 2000

ETH Zürich Laboratorium für Festkörperphysik Prof. Dr. H. Siegmann TTM A. Mayer September 2000

Solid Combustion Particles emitted in large Concentrations by Diesels and other Traffic Partners invisible - in the Nanometer Size Range Lung penetrating, a Health Risk in all Cities

are an object of scientific research since more than 30 years.

Not all of their properties and not all possible health risks are understood yet and further research is needed in the field of physical/chemical description or their generation in combustion and following modification in the atmosphere as well as of the mechanisms of their toxicitv impact to human health – this will remain an extremely interesting field of research and given the complexity of particle formation it might provide open questions for many coming years.

Three main targets however have been reached, which ask for immediate action by emission engineering:

- Diesel PM-emissions are classified as "carcinogenic" by swiss clean air act and by others as "probably carcinogenic for humans" which leads to the legal request to "minimizing emissions according to BAT".
- Particulate filters have been developed which trap those particles even in the nanometer range by an efficiency of 99 % or better – which defines BAT
- The main properties of combustion generated particles such as mass, number, surface and phase can be measured by robust instruments even information of their chemistry can be collected online during transient cycles.

The need to introduce available technical means to clean the exhaust of Diesel engines to the extent of a nearly-ambient particle concentration seems obvious and imperative. Striking enough however this does not happen on large scale because of a number of very simple facts:

- Diesel combustion particles are not clearly defined (and never will ?)
- Their health relevant properties are not clearly defined (and never will ?)
- Measurement technique is not defined yet (but could be soon ?)

On the other hand it is well accepted that the exhaust gas can be perfectly cleaned from such defined and undefined particles, from the more and minor toxic substances whether they are measured as EC, EC+OC, mass or number or surface, particle core or particle bound substances – after cleaning there are hardly any left to be measured.

Based on this a simple engineering mind can only draw the following pragmatic conclusion: let's use this technology and clean the combustion gases and just agree on available techniques and cycle conventions to control this step to efficiently clean our breathing air – keeping in mind that further improvement is never excluded.

The 4.ETH-Conference on the Measurement of Nanoparticles with its workshops was devoted to this target. We have not reached it but we have succeeded to make a few steps into the right direction.

We are confident to answer open questions during a next year of research and development and we invite the Nanoparticle-community to share these results during the 5.ETH-Conference on Nanoparticle Measurement - again on the Zürich ETH University Campus on 6th and 7th of August 2001.

A.Mayer Editor

CONTENTS

Session 1: Input from other meetings and programs

J. McAughey/AEA Technology <i>VPEC-Program / UK</i>	1
M. Dunne/DETR <i>GRPE-Meeting Geneva, 21.5.2000</i>	2
D.J. Rickeard/ESSO <i>CRC-Meeting, Paris, 19.6.2000</i>	3
M. Mohr/EMPA <i>EU-Program "Particulates"</i>	4
J. McAughey/AEA Technology <i>Questionnaire from 3. ETH Workshop 1999</i>	5

Session 2: Health effect oriented metrology

J. McAughey/AEA Technology Health effects of particle emissions - impact on metrology	6
Alex Bugarski, Mridul Gautam/West Virginia University Size Distribution and Deposition in Human Respiratory Tract: Particle Mass and Number	7
J.P. Morin/University Rouen In vitro lung toxicity of diesel exhausts using continuous flow sampling and exposure devices	8
A. Duschl/University Würzburg The connection between Diesel exhaust aprticles and allergy	9
M. Costantini/HEI Relation between particle metal content (with focus on iron) and biological responses	10

Session 3: Research on Nanoparticles	
D. Kittelson/University Minnesota Diesel Aerosol sampling in the atmosphere	11
M. Gautam, Sandeep Mehta, Zhuyun Xu/University West Virginia Diesel exhaust plume studies: wind tunnel experiments and modeling	12
P. Gilot/University Mulhouse Comparison of soot reactivity in the presence of O_2 or NO_2	13
A. Keller/ETH Zurich Scaling laws with combustion particles	14
K. Siegmann/ETH Zurich Carbon formation in combustion	15
K. Sattler/ETH Zurich Nanoparticles in the time of flight mass spectrometer	16
F. Dorfer/AVL Diesel particle morphology depending on particle size	17

Session 4: Instrumentation and calibration / Part 1	
H.G. Horn Sampling and dilution for the measurement of nanoparticles from engine exhaust	18
I. Khalek/SWRI SMPS and ELPI calibration using diesel exhaust particles	19
D. Booker/Booker-Systems Development of a real-time transient cycle mass monitor	20
N. Bukowiecki/PSI Comparing SMPS Particle Size Distributions with DC, PAS and CPC Data	21
H. Burtscher/FH Aargau The electrical diffusion battery for dynamic classificationof nanoparticles	22

M. Kasper/Matter Engineering NanoMet: on-line characterization of nanoparticle size and composition	23
U. Matter/Matter Engineering Stand alone soot generation - new standard, adjustable in size and concentration	24
L. Jing/EAM Properties of soot particles produced by a combustion aerosol standard	25
R. Zahoransky/Wizard Z. KG On-line/in-line measurements of particle emissions by a combustion aerosol standard	26
A. Leipertz/S. Dankers/LTT-Erlangen On-line Diesel soot diagnostics by time-resolved laser-induced incandescence (TIRE-LII)	27
J. Schlatter/EAM Legal Aspects of Particle Measurements	28

Session 6: Nanoparticle-emissions from combustions	
Tong Hui Ling/Tsinghua University, M. Fierz/ETH Zurich Continuous measurement of fine particles and gases in the exhaust of a coal power plant	29
V. Schmatloch/EMPA Fine particle emissions from wood and oil fired furnaces	30
J. Czerwinski/HTA Biel Nanoparticles in the exhaust gas of a chainsaw	31
G. Belot, F. Collin/PSA Peugeot Citroën Size distribution and PAH content of particulates emitted by DI and IDI Diesel engines	32
N. Metz/BMW Mass, Size, Number and Surface of diesel soot particles of DI engines with common rail	33

Session 7: Nanoparticles in the ambient air and in working places

B. Wehner/Institute for Tropospheric Research Temporal and spatial variation of nanoparticle number concentration	
in the urban area	34
Ji Ping Shi/University Birmingham Particle number emission fromdiesel and petrol vehicles driving on road	35
C. Dickens/AEA Technology In-cabin particle exposure from vehicle emissions	36
H.C. Siegmann/ETH Zurich Phys. and chem. properties of particulate air pollution in major cities by portable sensors	37
U. Lambrecht/IFEU How can we estimate today's and future particulate emissions from transport and air quality?	38
D. Dahmann/Institut für Gefahrstoff-Forschung der BBG Nanoparticle emission measurement at the working place	39
K. Earnshaw/Booker Systems Real-time particle mass measurement in the environment	40
Th. Kauffeldt/University of Duisburg Test of cabin air filter with soot-similar test aerosol	41

Session 8: Influence of fuels and engine management on nanoparticle emissions

U. Lehmann, M. Mohr/EMPA Particle Emissions during cold start of a diesel and a petrol passenger car	42
M. Gruber/TU Wien Influence of fuel properties and aftertreatment techn. on particles in tailpipe and ambient air	43
F. Tort/ELF Influence of water emulsions on nanoparticle emission characteristics	44
N. Rojas/University Leeds Deposition/Release of particles in a diesel oxidation catalyst, effect of EGR on cold start	45
M. Mohr/EMPA, L. Jäger/ETH-LVV Investigation on the effect of engine management on the particle emissions	46
J.F. Unsworth, R. Strading, C. Dobson/Shell Global Solutions Fuel quality effects on Diesel particle emission from HDV and LDV	47

Session 9: After-treatment

Th. Lanni/NYS Particle size distributions from CRT-equipped NYC transit buses	48
A.G. Konstandopoulos/FORTH/CPERI Diesel particulate aftertreatment: characteristics of various filter media	49
P. Zelenka/Zeuna-Stärker Engine - management - supported after-treatment systems for HDV and LDV	50
J. Peter-Hoblyn/CDT, A. Mayer/TTM Size specific chemical analysis of engine emitted nanoparticles with traps and fuel additives	51
S. Cook/OCTEL Secondary Emissions when using fuel additives for regeneration?	52
A.G. Konstandopoulos The Diesel Exhaust Aftertreatment Cluster in the EU-growth programme	53

APPENDIX

- Programme of the 4. ETH Workshop on Nanoparticle Measurement
- List of Participants
- E-Network of Metrology Experts
- Questionnaire Results