
8. ETH Konferenz Nanopartikelemissionen, 16. – 18. August 2004, Zürich

Technologien zur Emissionsminimierung von Dieselabgasen in Nutzfahrzeugen und Off Road

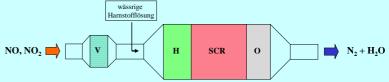
Abgasgesetzgebung für Nutzfahrzeuge und Emissionskontrolltechnologien

	Jahr der			
	Einführung	NOx	PM	Technologie
		g/kWh	g/kWh	
US 2002/4	2002/2004	3,4	0,13	AGR, AGR + DOC
		NOx+HC	0,067 (Bus)	
EURO IV	2005	3,5	0.03 (ETC)	AGR + DOC, AGR + DPF, SCR
			0,02 (ESC)	
Japan	2005	2,0	0,027	AGR + (DOC) + DPF + opt. Verbrennung
US 2007	2007	1,5 - 1,6	0,013	AGR + (DOC) + DPF + opt. Verbrennung
EURO V	2008	2,0	0,03 (ETC)	- SCR
			0,02 (ESC)	- AGR + (DOC) + DPF + opt. Verbrennung
US 2010	2010	0,27	0,013	AGR + DOC + DPF + opt. Verbrennung + DeNOx

Motorische Maßnahmen:

AGR = Abgasrückführung Verbrennungoptimierung: Einspritzdruck Maßnahmen der Abgasnachbehandlung (Abgasstrang):

DOC = Diesel-Oxidation-Catalyst
DPF = Dieselpartikelfilter
SCR = Selektive Catalytic Reduction
DeNOx = Maßnahmen zur generellen NO_x Reduktion

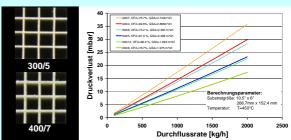

Corning DuraTrap® Dieselpartikelfilter

Rufipartikel Alogas + Rufipartikel Quereinigtes Alogas Alogas (1) > 95%

Corning DuraTrap® Filter

- hoher Filterwirkungsgrad η
 >95%
- niedrige thermische Ausdehnung (5 x 10⁻⁷ 1/°C)
 - ⇒ gute
- Thermoschockbeständigkeit
- Monolithisch
- · Fortschrittliches Filter Design

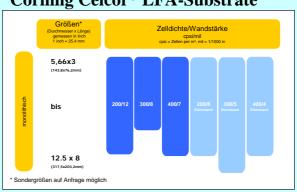
SCR-System zur effektiven Reduzierung von NO_x-Emissionen

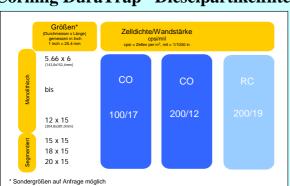

V = Vorkatalysator (optional)

 \mathbf{H} = Katalysator zur Harnstoffhydrolyse (optional) \mathbf{SCR} = Katalysator zur Reduktion von $\mathrm{NO_x}$ durch $\mathrm{NH_3}$

O = Sperrkatalysator zur Oxidation von überschüssigem NH₃

DuraTrap® CO DuraTrap® RC Zelldichte: 200 cpsi / 19 mil Aufgrund der optimierten Wärmekapazität ermöglicht das DuraTrap® RC-Konzept höhere Rußbeladungs Rußbeladungslimit Rußbeladung Rußbeladung


Corning Celcor® Substrate Standard- und Dünnwand


Celcor® Dünnwandsubstrate:

Druckverlustvorteil durch reduzierte Wandstärke

Standardgrößen Corning Celcor® LFA-Substrate

Standardgrößen Corning DuraTrap® Dieselpartikelfilter

cpsi = Zellen pro inch² 1 mil = ¹/₁₀₀₀ inch = 0.0254 mm

LFA = Large Frontal Area

Abraham-Lincoln-Str. 30 D-65189 Wiesbaden Tel.: +49 (0)611 7366 123 FAX: +49 (0)611 7366 112 e-mail: ebeners@corning.com

Dr. Stefan Ebener

