Disposable Diesel Exhaust Filters Used In The Australian Underground Coal Mining Industry

Dr Brian Davies AM
Disposable Diesel Exhaust Filters

• Developed by US BOM in 1991
• Based on Donaldson truck air filter element
• Initial trials on Ram Car at Skyline Mine (95% reduction in workplace DPM). Testing based on in-mine sampling using personal aerosol samplers with gravimetric analysis
Schematic of Original DDEFs

Source: US BOM 1992
DDEFs in Australia

- Microfresh Filters (now Freudenberg Filtration Technologies) co-developed first DDEF with BHP Steel Illawarra Coal
- Non flammable material (as distinct from initial material used in USA)
- A 85% reduction in workplace DPM exposure levels measured using simulated in-mine sampling
- Introduced into coal mines in 1995
DDEFs in Australia (cont)

- Filters last from 8 - 50 hours depending on type
- Cost $100 - $250 AUD (€68 - €170)
- Not a statutory requirement
Current Filter Types

<table>
<thead>
<tr>
<th>Media</th>
<th>Approximate Initial Particle Filtration Efficiency (at 25 nm)</th>
<th>Other Attributes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrostatically charged Polypropylene</td>
<td>95%</td>
<td>Low backpressure, good water pass-through, extended life</td>
</tr>
<tr>
<td>Paper (Cellulose) / fibreglass</td>
<td>50%</td>
<td>Low initial backpressure but then spikes quickly, Short life</td>
</tr>
<tr>
<td>Fibreglass matting</td>
<td>20%</td>
<td>Very long life due to inefficiency, high unit cost</td>
</tr>
<tr>
<td>Polyester</td>
<td>90%</td>
<td>Reasonable efficiency, moderate life, high unit cost</td>
</tr>
<tr>
<td>Electrostatically charged Co-polymer</td>
<td>95%</td>
<td>Low backpressure, good water pass-through, extended life (about double that of Polypropylene)</td>
</tr>
</tbody>
</table>
New & Used DDEF Media

Reproduced with permission.
EIMCO Loader

Reproduced with permission.
Personnel Transporter
Twin Filter System

Reproduced with permission.
Coal Tram
Historical DDEF Issues

- In USA a build up of DPM lead to a fire in several vehicles (cellulose filters) due to loss of scrubber water
- Maintenance of seals and canisters important
- Change out of filters needs to be on performance not operator perceptions
- Significant ongoing cost but very effective in controlling DPM in coal mines
Current DDEF Issues

• Search for cost savings have resulted in numerous filter materials being used (are current evaluation procedures appropriate?)

• Some operations have adopted the approach that DDEFs will solve all their DPM issues - not willing to invest in other control technologies like emissions based maintenance which would reduce employee exposures AND extend the life of filters
Development of DDEF Efficiency Test Procedures in Australia

• 1993: In–mine sampling using personal DPM samplers & gravimetric analysis
• 2000: Static test using a R & P 5100 EC analyser developed as part of filter pleat research
• 2000’s: Supplier testing in field trials using laser light scattering instrumentation for EC
• >2012: Particle number & size investigations by at least one supplier & several researchers
Surface Test Tunnel (1993 -4)

Source: B Davies
Underground Test Tunnel (1994)

Source: B Davies
Historical Efficiency Testing in Australia

Source: B Davies
R&P Elemental Carbon Analyser

Source: B Davies
Initial Source of Emissions for Efficiency Testing (Cat 3304)

Source: B Davies
Current Testing Requirements

• % Efficiency using ISO 8 point cycle with EC analysis by laser light scattering & NIOSH method 5040

• Duration test over 6 hours minimum at load point 5 on ISO test cycle
Acceptance Criteria

• % Efficiency – no actual limit set. If compared to another “in use” filter the new filter must provide equivalent or better efficiency

• Duration test – filter must last a minimum of 6 hours as determined by breakthrough or backpressure
Current Workplace Exposure Limits for DPM in Coal Mines

- No statutory limit (ALARP)
- Guideline of 0.1 mg/m3 EC based on AIIOH recommendation
- Some companies implementing lower standard
- No limit on particle number (but what is an appropriate health based limit for worker exposure in coal mines?)
Research in Past 5 years

• Focus in recent years has been on the longevity & cost reduction of DDEFs

• Some manufacturers looking at particle size & number

• Investigations into effectiveness of current testing procedures of respiratory protective equipment (RPE) used to control DPM
Australian vs Imported Filter

% Efficiency at varying particle sizes over time

Reproduced with permission.
What is required

• A standard test procedure for the testing of all DDEFs in terms of downstream worker health protection

• Agreed acceptance limits based on health outcomes (EC and/or particle number?)

• Legislation by statutory authorities to ensure compliance
Current UoW Project

• Is it possible to have a stationary test procedure for DDEFs that can link the outcomes to downstream worker health protection as distinct from comparison testing?

• What is the best measurement metric for such a test (EC and/or particle number)?
Current UoW Project

• What are the appropriate health based acceptance limits for use in coal mines (EC and/or PN)?

• Can these limits be used for RPE?

• International partners – Is it possible to build on past experience?
Summary

• DDEFs have been very effective in controlling workplace exposures to diesel particulate in coal mines
• Very expensive on an hour usage/$ basis
• Need for a more appropriate assessment methods linked to worker health effects
Questions