Silica formation in flames with siloxane admixture: effects of admixture concentration, flame temperature and equivalence ratio

P. N. Langenkamp, H. B. Levinsky, A. V. Mokhov

1Laboratory for High Temperature Energy Conversion Processes
Energy and Sustainability Research Institute Groningen, University of Groningen, The Netherlands
2DNV GL – Oil & Gas, Nederland B. V. Groningen, The Netherlands

Introduction

Biogases can play an important role in a transition away from fossil fuels, but often contain impurities such as siloxanes. SiO₂ molecules generated in the combustion of the siloxanes coalesce together into particles which subsequently form even larger aggregates and deposit on internal parts of combustion equipment. We used angle-dependent light scattering as a quicker and less invasive alternative to ex-situ methods such as TEM to investigate aggregate growth in premixed CH₄/hexamethyldisiloxane (L2)/air flames at various siloxane concentrations, flame temperatures and fuel equivalence ratios.

Experimental setup / procedure

Measurement environment
- Burner-stabilized premixed (methane/air) flames.
- L2 added through bubpler system.
- Temperature controlled through exit velocity gas mixture.

Measurement / detection
- 532 nm cw laser beam directed through the flames.
- Detection of scattered light at four angles simultaneously.
- Calibrated using Rayleigh scattering from SF₆.
- Guinier analysis to determine aggregate size.

Results

- Measured \(R_g \) in the range of 10 to 120 nm.
- Sublinear dependence of \(R_g \) on residence time.

Admixture concentration dependence of growth

Sublinear dependence of \(R_g \) on doping concentration.

Temperature dependence of growth

Non-monotonic dependence of \(R_g \) on flame temperature: \(R_g \) increases with flame temperature up to around 2000 K, but decreases thereafter.

Fuel equivalence ratio dependence of growth

A lean flame environment (\(\phi = 0.8 \)) appears to foster aggregate growth compared to rich (\(\phi = 1.3 \)) and stoichiometric flames in which growth is very similar.

Discussion

- When fixing the initial conditions at the residence time corresponding to the first measurement point, a simple model describing particle evolution as a result of collisional growth and sintering predicts the functional dependence of the growth of particle radii well.
- The relatively limited growth at the highest used flame temperatures is likely because the melting point of SiO₂ (about 2000 K) is exceeded, which quite possibly affects the primary particle size and fractal dimension.

Acknowledgments

The presented work is a continuation of experiments by Jennifer D. Herdman, using a modified setup. This research has been financed by a grant from the Energy Delta Gas Research (EDGaR) program.

For small aggregates the angle dependence of the scattered signal \(I \) can be approximated by:

\[
\frac{I(0)}{I(q)} \approx 1 + \frac{1}{3} q^2 R_g^2, \quad q = 2k \sin \left(\frac{\theta}{2} \right)
\]

where \(k \) is the magnitude of the wave vector, \(\theta \) is the scattering angle, and \(R_g \) is the mass-averaged root-mean-square radius (radius of gyration) of an aggregate.