EFFECT OF DIMETHYL ETHER MIXING ON SOOT SIZE DISTRIBUTION IN PREMIXED ETHYLENE FLAME

Zepeng Li, Suk Ho Chung, William L. Roberts
Clean Combustion Research Center, King Abdullah University of Science and Technology, KSA

Background

- **Soot**: Carbonaceous particles resulting from incomplete combustion of hydrocarbon fuels
 - Incomplete Combustion: Efficiency
 - Deposition: Burner Lifetime / Performance
 - Health: Carcinogenic and Mutagenic
 - Climate: Global Warming & Regional precipitation
 - Visibility: Haze

- **Dimethyl Ether (DME)**
 - High oxygen content & absence of C-C bonds
 - Smokeless combustion, low formation and high oxidation rates of particulates.
 - High cetane number:
 - Low auto-ignition temperature, almost instantaneous vaporization.
 - Low boiling point: quick evaporation
 - Low energy density
 - High requirements on sealing materials

Methodology

- **Experimental techniques**
 - Flame configuration:
 - Burner-stabilized stagnation flame with the equivalence ratio (Φ) of 2.0
 - Temperature measurement:
 - Rapid insertion technique with a type-R thermocouple
 - Soot size distribution measurement:
 - Probe sampling and Scanning Mobility Particle Sizer (SMPS)
 - Soot characterization:
 - Thermo-gravimetric Analyzer (TGA), Elemental Analyzer (EA)

- **Numerical simulations**
 - CHEMKIN PRO
 - Module: Premixed Laminar Burner-Stabilized Stagnation Flame
 - Reaction kinetic model: KAUST-Aramco PAH Mech 2 Ver1.0

Results: Soot Size Distribution

- Normalized particle size distribution functions (PSDFs)
 - DME mixing ratio: 0%
 - DME mixing ratio: 10%
 - DME mixing ratio: 20%
 - DME mixing ratio: 30%

- The bimodal distribution appears at:
 - Hₚ = 0.8 cm (0% DME)
 - Hₚ = 0.9 cm (10% DME)
 - Hₚ = 1.0 cm (20% DME)
 - Hₚ = 1.2 cm (30% DME)

- Notable delay in soot formation due to DME addition

Results: Soot Oxidation Behavior

- Thermo-gravimetric analysis of soot samples at incremental DME mixing ratios.
- Temperatures corresponding to 5% (a), 95% (b) conversion ratios, respectively.
- Lower temperature represents better oxidizability.

- Elemental analysis of soot samples at incremental DME mixing ratios.
 - Higher O/C and H/C mass ratios represent better oxidizability.

Results: Mole fractions of Major Species

- Calculated mole fractions of several crucial species in soot formation and oxidation

- DME mixing ratio
 - CH₄
 - SOOT formation
 - CH₄
 - SOOT oxidation

- The addition of DME inhibits soot formation and facilitates soot oxidation.

Conclusion

- The addition of DME reduces soot emission in two ways:
 - The addition of DME inhibits soot nucleation and size growth, then the production of soot particles decreases;
 - The addition of DME promotes soot oxidation process by increasing the concentration of OH radicals and improving the oxidizability of the soot particles, then more particles are oxidized.
- Both of them are responsible for the reduction of soot emission at the presence of DME.