Evaluation of exhaust emissions of vehicles with emission Euro 6 class according to RDE tests proposed by the European Union

Jacek Pielecha, Jerzy Merkisz
Jarosław Markowski, Remigiusz Jasiński
Institute of Combustion Engines and Transport
Poznan University of Technology, Poland

Abstract
New test procedures for determining exhaust emissions from passenger vehicles will be introduced in 2017. For several years, the European Commission is developing new procedures, which aim is to perform tests under real road conditions. The purpose is to determine the real value of emissions, which do not always reflect the level of emissions in the laboratory. Proper and accurate procedures for determining emissions in real traffic conditions (RDE – Real Drive Emission) have not yet been approved (as opposed to Heavy-Duty Vehicles for which such conditions already exist), but there are proposals that are currently analysed by major research centers in Europe. There are many differences between those proposals such as determining road emission or research methodology related to emission measurement of hydrocarbons.

The work compares the results of emissions measured in road tests using the latest legislative proposals related to passenger cars. The results are shown in relation to the used measurement method:

- classical method of determining exhaust emission; uses all measurement data determining the mass of harmful compounds and distance travelled during the test,

- method of averaging the measuring windows (MW – moving average windows), also in the literature called EMROAD method, which determines the measurement windows (on the basis of carbon dioxide emissions from the WLTP test) and on its basis determines the road emission in RDE test,

- generalized method of instantaneous power (Power Binning), known in the literature as CLEAR – Classification of Emissions from Automobiles in Real driving, determines road emissions on the basis of generalized instantaneous power during the RDE test.

EU Emission Legalisation Roadmap

<table>
<thead>
<tr>
<th>Year</th>
<th>Euro 6f</th>
<th>RDE</th>
<th>EMROAD</th>
<th>CLEAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2016</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2017</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2018</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2019</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2020</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2021</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2022</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RDE-LDV Trip Requirements
Overall

- The trip sequence shall consist of urban driving followed by rural and motorway driving.
- The trip duration shall be between 90 and 120 minutes.
- The start and the end point shall not differ in their elevation above sea level by more than 100 m.

Urban

- Vehicle speed (V): 0 ≤ V ≤ 60 km/h
- Distance based: > 34% (±10%)
- Min. distance: 16 km (min. distance based = 25%)
- Average speed (inc. idling): 15 – 30 km/h
- Less than 1 km/h for at least 10% of the urban driving time
- Long stop period (> 80% of the total stop time of urban operation) shall be avoided

Rural

- Vehicle speed (V): >60 V ≤ 90 km/h
- Distance based: < 33% (±10%)
- Min. distance: 16 km

Motorway

- Vehicle speed (V): V ≥ 90 km/h (90 – 110 km/h)
- Distance based: < 33% (±10%)
- Min. distance: 16 km
- Above 100 km/h for at least 5 minutes
- Max speed 145 km/h (130 km/h by a tolerance of 15 km/h for not more than 3% of the time duration of the motorway driving)

Results

Special thanks to ERMES and JRC for providing the EMROAD and CLEAR software.

The research was funded by the National Centre for Research and Development (Narodowe Centrum Badań i Rozwoju) project within the INNOTECH Programme (Contract No. INNOTECH-K2/1236/182269/NCBP/12).

Summary
In road tests conformity factors (CF) – depending on the applied technical solutions – for gasoline engines with direct injection for emissions class Euro 6 are less than 1. Values of the conformity factors for vehicles with Diesel engines look otherwise: a road tests have shown that the values of the conformity factors of carbon monoxide are less than 1 (meet the standard), whereas the emission of oxides of nitrogen were obtained between CF_{NOx} = 1.7 – 4.8 (according to the classical method: CF_{NOx} = 2.5 – 4.8, according to the MAV method – CF_{NOx} = 2 – 4.8) and the CLEAR method – CF_{NOx} = 1.3 – 3.2. Also, same situation applies to the determination of particulate emissions; in terms of number, conformity factors reached CF_{PM} = 0.3 – 0.9 (all methods).