

Non-volatile particulate matter mass and number emissions of an aero gas turbine fueled with alternative fuel blends

22nd ETH-Conference on Combustion Generated Nanoparticles, June 18th, 2018

Benjamin Brem¹, L. Durdina^{1,2}, M. Elser^{1,2}, D. Schönenberger^{1,2}, A. Setyan^{1,2}, S. Wyss³, M. Munoz¹, D. Schreiber⁴, A. Liati⁴, R. Haag¹, D. Rentsch⁵, A. Fischer³, J. Mohn³, N.V. Heeb¹

¹Empa, Laboratory for Advanced Analytical Technologies, CH-8600 Dübendorf, Switzerland, benjamin.brem@empa.ch
²ETH Zürich, Institute of Environmental Engineering, CH-8093 Zürich, Switzerland
³Empa, Laboratory for Air Pollution and Environmental Technology, CH-8600 Dübendorf, Switzerland
⁴Empa, Automotive Powertrain Technologies Laboratory, CH-8600 Dübendorf, Switzerland
⁵Empa, Laboratory for Functional Polymers, CH-8600 Dübendorf, Switzerland

Standard Jet Fuel (Jet A-1)

- ✤ Major components:
 - → Alkanes ($C_n H_{2n+2}$) ~ 60% v/v
 - High energy content at a low density
 - Low sooting propensity
 - Low reactivity
 - → Cycloalkanes (C_nH_{2n}) ~20% v/v
 - Low energy content
 - Low freezing point
 - → Aromatics ~ 20% v/v
 - High sooting propensity
 - Swell seals to prevent fuel leaks
 - ✤ Sulfur (<0.1% v/v):</p>
- Formulated for operational stability and safety!

2

Alternative Jet Fuel Types

✤ Fischer- Tropsch (FT)

- Fully synthetic from any carbon feedstock most common feedstock is coal! (South Africa)
- ✤ Contain mainly n-alkanes
- ✤ Synthesized Iso- Paraffins (SIP)
 - Derived from sugar cane (Brazil) with subsequent hydro processing (removal of oxygen)
 - ✤ Contain mainly C15 iso-alkanes

Hydro Processed Esters and Fatty Acids (HEFA)

- Derived from vegetable oils which are hydro processed to remove oxygen and to isomerize
- Contain mainly n- and iso- alkanes

Fuel chemistry - soot emission link

- In the focus of research for more than half a century
- Fuel rich pockets within the flame promote the formation of heavy PAHs which pyrolyze and form soot PM
- Fuel aromatic content is critical
- Aliphatic species can also form PAHs, but reaction rates are typically slower than reactions on already present aromatic species
- PAHs and soot have typically short lifetimes and most of them are oxidized in fuel lean zones

 $\underbrace{\begin{array}{c} 50 \text{ nm} \\ Coagulation \\ Surface Growth and Coagulation \\ Particle Inception \\ Particle Zone \\ \\ \end{array}$

Soot formation mechanism in premixed flames (Bockhorn 1983)

Objectives

- 1. Investigate the effect of alternative HEFA fuels on non-volatile PM mass and number emissions of an in-production aircraft engine
- 2. Evaluate the previously developed parameterization that links the non-volatile PM emissions to fuel hydrogen mass content

Experiments performed

- 1. Fuel "doping" experiment with HEFA originating from used cooking oil
 - ✤ This experiment addressed low blending ratios (5 and 10%) of alternative fuels
 - ✤ Test cell occupation: 2 days
- 2. Alternative fuel experiment with 42 m³ of commercially available JET A-1 HEFA blend (as an airline would buy it)
 - ✤ The HEFA content of this fuel was 32% v/v
 - ✤ The HEFA fraction also originated from used cooking oil (California)
 - ✤ Test cell occupation: 4 days

Engine and test matrix

✤ An airworthy CFM56 engine was used for these experiments:

(\mathbf{b})	Hours of operation	32297
Ċ,	Engine cycles	15271
✓	Performance	Typical performance
£.	Oil consumption	High (0.3 l/h)

✤ Typical test matrix consisted of the following test points:

Engine thrust (%)	Targeted flight phase	Approx. fuel flow (kg/s)	
Warm-up	N.A.	N.A.	
100	Take -off	1.24	
85	Climb-out	1.02	
65	Cruise (High)	0.74	
50	Cruise (Low)	0.55	
30	Approach	0.33	
7	Тахі	0.12	
Idle	Tramac Idle	0.09	

✤ The combustor inlet temperature (T3) was used as the engine control variable

Experimental setup

(figure credit Lukas Durdina)

7

Experimental setup

Fuel effect on nvPM emissions

- ✤ Clear effect of HEFA fraction visible for both mass and number emissions
- ✤ Clear thrust dependence observed
- ✤ Effect on mass and number is comparable

Change in nvPM emissions vs. change in aromatics

- ✤ Fair linear dependency
- ✤ Effect on mass and number comparable (at high engine thrusts)

Fuel hydrogen content as a predictor for non-volatile Empa PM emissions

- Lumping complex aromatics chemistry into one predictor
- ✤ A simple model was developed:

Change in emission index

Fitting parameter Engine thrust level

 $\neg \Delta Ei_x = (\alpha_0 + \alpha_1 \times \hat{F}) \times \Delta H$

 The following fitting parameter were determined to predict the combined changes in mass and number

Variable	α ₀	α ₁	Adjusted R ²	
ΔEi Combined	-119.31± 3.94	1.03 ± 0.05	0.92	

 Requires very accurate measurement of fuel hydrogen mass

Change in nvPM emissions vs. change in fuel hydrogen

Applying parameterization

 Δ Hydrogen [% m/m]

✤ At small changes in fuel chemistry, parameterization underpredicts changes in emissions

Implications for the landing and take-off cycle of a Boeing 737 jetliner

HEFA fraction (%)	nvPM mass emissions (g)	nvPM number emissions
0	25.63	1.14E+17
5	24.10	1.03E+17
10	22.87	1.01E+17
32	21.90	8.98E+16

Improvements are marginal, emissions are dominated by high thrust settings

Summary and conclusions

- ✤ Particle emissions of a current technology turbofan fueled with standard Jet A-1 and three HEFA – JET A-1 blends of 5, 10 and 32% were measured in a test cell setting
- ✤ HEFA fuel has the biggest impact at low engine thrusts where its reduced total aromatic content lowers the emissions (up to 70% for the 32% HEFA blend)
- ✤ The previous developed emission parameterization using fuel hydrogen mass content is qualitatively applicable but generally under predicts the reduction in emissions
- LTO cycle emissions are only marginally affected by the use of HEFA fuels

Acknowledgements

- → SR Technics: Frithjof Siegerist, Mike Weiner, test cell crew and engine leasing department
- ✤ Empa Administration
- ✤ Empa 504: Christian Bach, Roland Graf (fuel import know-how and permits)
- ✤ Funding: Swiss Federal Office of Civil Aviation SFLV 2015-113

Thank you for your attention!

Appendix: Fuel compositional parameters associated with soot emissions

Property	Unit	ASTM Method	Jet A-1	ICAO Annex 16	Typical Value (ZRH)	Alternative Fuel Blends
Total Aromatics	% v/v	D 1319	< 25	15 - 23	17.9 +/-0.34	8 - 25
Smoke point	mm	D 1322	> 18	20 - 28	21.6+/-1.3	>18
Naphthalenes	% v/v	D 1840	< 3	1 – 3.5	0.79+/-0.11	<3
Hydrogen	% m/m	D 5291	N.A.	13.4 – 14.3	14.1+/-0.25	N.A.

- ✤ Standard Jet A-1 shows little compositional variation
- ICAO specifications were made that visible smoke emissions are not affected by compositional variations
- ✤ For alternative fuels a minimum total aromatics content of 8% is prescribed

Appendix: Fuel effect on the PSD at 30% engine thrust

- ✤ Clear fuel effect on the particle concentration is observed
- Slight (2%) shift towards smaller diameters with increasing HEFA fraction