Development of Emission Factors of Nanoparticles (PM$_{0.1}$) from Solid Biomass Combustion

Hisam Samee, Worradorn Phairuang*, Surajit Tekasakul, Perapong Tekasakul, Masami Furuuchi
Department of Chemistry, Faculty of Science, Prince of Songkla University, Thailand

Correspondence Address: Dr. Worradorn Phairuang, Faculty of Environmental Management, Prince of Songkla University, Thailand E-mail: worradorn.p@psu.ac.th

INTRODUCTION

- The direct combustion of biomass fuel dominates the utilization of biomass fuels and is most important.
- However, it produces many air pollutants such as CO$_2$, SO$_2$, NO$_x$, particulate carbons and other pollutants. Particularly, much of ultra to nanoparticle are generated as reported elsewhere.
- Knowledge about characteristics and the control of pollutant emission is vital to biomass utilization with the minimum environmental load.
- The PM$_{10}$, or nanoparticle emission inventory from solid biomass burning have not been study so far in Thailand and Asian countries.
- The lack of data both of activity level and corresponding Emission Factors (EFs) would lead to large uncertainty inventory.
- Therefore, the result of EFs evaluation of solid biomass fuel will be important to develop high quality emission inventory.

RESULTS AND DISCUSSION

- The size distributions of the smoke particles indicates a single-mode behavior.
- They contained major particles in an accumulation mode (0.1 µm < particle size < 2.5 µm).
- The results display that the combustion of solid biomass emits a large fraction of fine particles.
- Around 20% of the six types of the smoke particles have a mass that fell within a range of < 100 nm.

METHODOLOGY

Solid biomass fuel
- 6 types including; Palm Kernel, Rice Straw, Sugarcane Leaf, Corn stem, Bagasse, Rubber Wood

Air Sampler as a common tool for the evaluation EFs
- Sampler: The sampler consists of four impactors stages (> 10, 2.5 - 10, 1 - 2.5, 0.5 - 1 µm) as well as an inertial filter stage (0.1 - 0.5 µm) and a backup filter (< 0.1 µm) (See Fig 2.) (Furuuchi et al., 2010)
- Filter: A quartz fibrous filters 55 mm (Pallflex 2500 QAT-UP)
- Flow rate: 40L/min.

Combustion Experiment
- The solid biomass burned in a horizontal tube furnace with an inserted quartz column.
- Dry clean air approximately 1.6 L/min is purged into the furnace to combust the solid biomass sample.
- In order to reduce the temperature and moisture content, the exhaust was diluted with a dilutor (OD = 35 mm and L = 800 mm) include a mixing tube (L = 70 mm) by the dry clean air

Emission Factors (EFs) Calculation
Emission factors (EFs) of PM$_{0.1}$ from the burning experiment will calculate based on the flow rate of the Nano sampler and particulate matter concentrations using Equation [1] (Kim Oanh et al., 2011).

\[
[1] \text{EF} = \frac{\text{Concentration (mg/m}^3\text{)} \times \text{Flow rate (m}^3\text{h}^{-1}\text{)} \times \text{Sampling time (h)}}{\text{biomass burned (kg)}}
\]

Table 1. Measured PM$_{0.1}$ Emission Factors (g/kg$^{-1}$) for Solid Biomass

<table>
<thead>
<tr>
<th>Biomass type</th>
<th>Excess air (L/min)*</th>
<th>Heating rate (°C/min)*</th>
<th>Maximum temperature(°C)</th>
<th>PM$_{0.1}$ Emission Factors (g/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Palm Kernel</td>
<td>0.25</td>
<td>5</td>
<td>575</td>
<td>0.17</td>
</tr>
<tr>
<td>Rice Straw</td>
<td>0.15</td>
<td>5</td>
<td>575</td>
<td>0.11</td>
</tr>
<tr>
<td>Sugarcane leave</td>
<td>0.15</td>
<td>5</td>
<td>575</td>
<td>0.11</td>
</tr>
<tr>
<td>Corn stem</td>
<td>0.10</td>
<td>5</td>
<td>575</td>
<td>0.14</td>
</tr>
<tr>
<td>Bagasse</td>
<td>0.14</td>
<td>5</td>
<td>575</td>
<td>0.22</td>
</tr>
<tr>
<td>Rubber wood</td>
<td>0.13</td>
<td>5</td>
<td>575</td>
<td>0.15</td>
</tr>
</tbody>
</table>

*excess 130% air

- The Emission Factors (EFs) values for six types of solid biomass burning in the laboratory experiment range from 0.11 to 0.23 g/kg.
- The highest EFs come from Bagasse (0.22 g/kg), the minimum EFs derive from rice straw and sugarcane leave (0.11 g/kg).
- The EFs are important for the development of strategies for pollution control and decrease the biomass burning.
- EFs of PM$_{0.1}$ will be discussed in detail based also on other chemicals.

Acknowledgement
The authors thank to the budget revenue of Prince of Songkla University (ENV601601N). Moreover, corresponding author thanks to Thailand Research Fund for new scholar (MRG6180077) as well as Research Fund for DPST Graduate with First Placement.

References

Fig 1. Para-rubber fuelwood in agroindustry, Thailand
Fig 2. PM$_{0.1}$ sampler
Fig 3. Schematic diagram of combustion system
Fig 4. Size Distribution of Solid Biomass Combustion

Correspondence Address: Dr. Worradorn Phairuang, Faculty of Environmental Management, Prince of Songkla University, Thailand E-mail: worradorn.p@psu.ac.th