

Evolution of nano-scale particle structures within a pilot-main injected jet fuel flame in a small-bore optical diesel engine

S. Kook¹, T. Aizawa², K.S. Kim³, C.-B. Kweon³

The University of New South Wales, Meiji University, DEVCOM Army Research Laboratory

Contact: Prof. Shawn Kook at s.kook@unsw.edu.au

Background and motivation

For a surrogate jet fuel specifically formulated for nanoparticle studies in an optically accessible small-bore diesel engine (Figure 1), combustion generated soot particles are sampled from multiple in-flame points and their structural evolution is analysed. The fuel contains 24% aromatics ("AR24"), similar with a conventional diesel fuel; however, its cetane number is only 40, posing a significant challenge for ignition and combustion control. It is a type of low-reactivity jet fuel used in unmanned aerial vehicles for various tactical reasons, which requires pilot injection prior to the main injection and thus produces more soot particles during combustion.

Approach

Figure 1 Engine setup for in-flame soot sampling and optical diagnostics

Figure 2. Soot particles morphology and nanostructure analysis

The soot particles deposited on transmission electron microscope (TEM) grids via thermophoresis are image post-processed to extract various morphology parameters such as the size of soot aggregates, primary particles and fractal dimension as well as concentricity, length, tortuosity and gap of the carbon-layer fringes (Figure 2).

The sooting flame trajectory is first identified by performing planar laser-induced incandescence imaging and high-speed soot luminosity movie recording (Figure 3). Along this trajectory, four soot sampling probes are installed on the piston-bowl wall with 60° spacing angles for simultaneous sampling from the same firing cycles. The first sampling point represents a jet-wall impingement region (JW) from which a jet flame starts to travel along the bowl wall while interacting with the swirl flow to both up-swirl and down-swirl directions. Three more sampling points therefore are selected for an up-swirl point (US), a down-swirl point 1 (DS1) and a down-swirl point 2 (<u>DS2</u>).

Figure 3. In-cylinder conditions, selected high-speed soot luminosity images, and planar laser induced incandescence images taken at 8 and 10 mm below the cylinder head for a high-sooting pilot-main injection condition of AR24 fuel.

Key Findings

The results indicate a large amount of small soot aggregates form at JW point due to fuel-rich mixtures (Figure 4 and Figure 5). These aggregates grow in size while the number counts decline, suggesting the aggregate-to-aggregate agglomeration and soot oxidation occur at the same time. This process is accelerated on the up-swirl side due to the counter-flow condition, showing similar parameter values between US and DS2 points. Interestingly, the primary particles show minimal changes on both up-swirl and down-swirl points; however, the significant soot particle oxidation is evident in the subnano-scale carbon layer fringes with increased tortuosity/gap (Figure 6). The concentricity also indicates the soot particles become a clearer core-shell structure as they flow along the bowl wall (Figure 7). This trend is also more evident on the up-swirl side, indicating a significant effect of increased flow/turbulence on soot evolution.

Figure 4. Example TEM images of the four sampling locations of the high-sooting pilotmain injection condition for AR24 fuel. A 30k TEM magnification is used for the soot aggregate number counting with the mean value plotted with error margins of 95% confidence while a 100k magnification is used for morphology analysis.

Figure 5. Size distribution of the soot aggregate radius of gyration and primary particles of the four sampling locations of the high-sooting pilotmain injection condition for AR24 fuel. The estimated fractal dimension is shown at the bottom.

Figure 6. Example HR-TEM images of AR24 fuel at varied sampling locations (top). The results are shown for the pilot-main injection condition. Shown in the middle are the corresponding carbon-layer fringes. The PDF profiles of the fringe length, tortuosity and separation are presented at the bottom row.

Figure 7. Example HR-TEM images of a soot primary particle and overlaid concentricity colormap for four sampling locations of the pilot-main injection condition of AR24 fuel. The frequency plot of the concentricity calculated from five primary particles is shown at the bottom.

