Dual Layer Coated High Porous SiC for SCR Integration into DPF

Ramona Deinlein, Thomas Wolff, Dinex GmbH

Outline

- Motivation for this development
- The high porous SiC substrate
- The first coating layer for improvement of mechanical strength
- The second functional layer: SCR catalyst
- Analysis of coated lab samples
- SCR efficiency in lab scale test
- Engine bench test data
- Summary

Need for future diesel exhaust emission systems: Euro VI/Tier 4 final and beyond

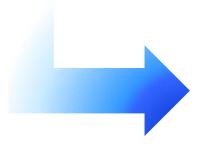
Reduction of space and costs CO₂ reduction via the exhaust system

- Weight
- Back pressure
- Regeneration strategy efficient control of temperature optimal use of fuel – lower fuel comsumption

Integration of DeNO_X (SCR) functionality into DPF

Literature:

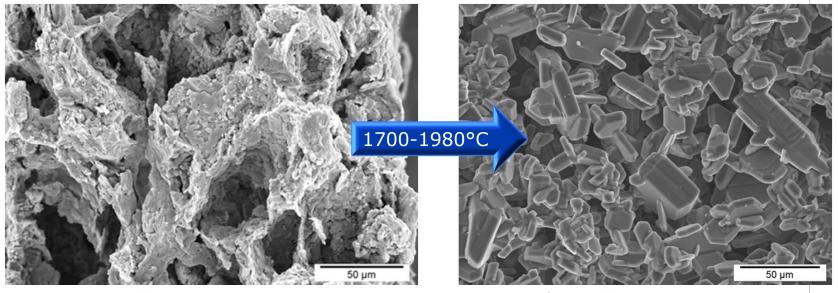
SAE 2011-01-1312 → reduced packaging by SCR-DPF / SCR SAE 2011-01-1140 → Cu zeolite on Cordierite DPF SAE 2013-01-0840 → high porous SiC


Design of a high porous DPF substrate for SCR integration

- High porosity level (> 60%)
- High spec. Surface area
- Good mechanical strength
- Reasonable soot load limit (> 5g/l)
- Specific weight high enough→ sufficient heat capacity
- High filtration efficiency

High wash coat loading for high NO_X conversion

Robustness and protection of catalyst


PN efficiency requirements

SiC with 65% porosity

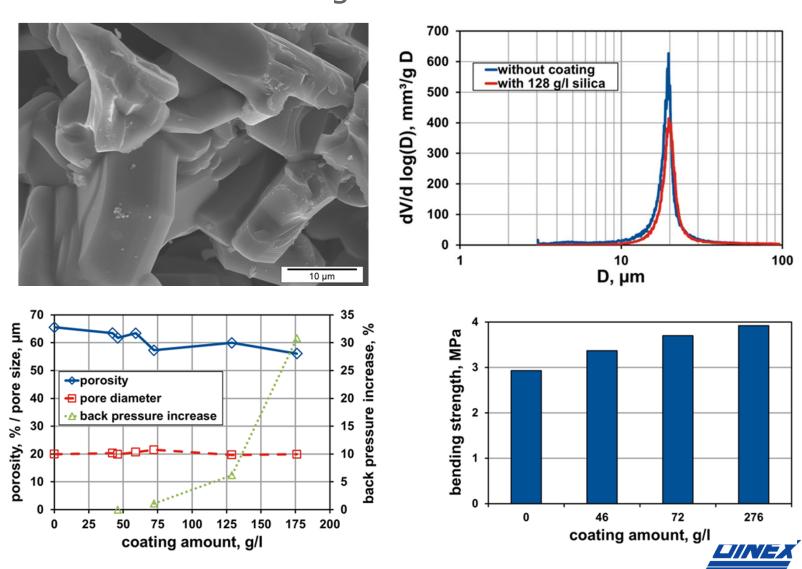
The high porous SiC substrate

SAE 2010-01-0539

WO 2013/076045A1

CTE (RT - 800°C), 1/K	4.7
Therm. heat cond. 400°C, W/mK	2.2
Spec. heat capacity 400°C, J/gK	1.032
Bending strength, MPa	2.8
Maximum operating temperature, °C	1400

Performance of blank filters due to filtration and back pressure


Back pressure PN efficiency @ 200kg/h, 450°C

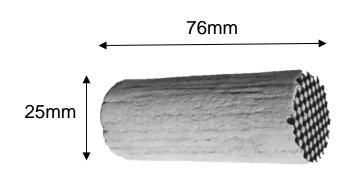
200 ср	si – 5.66"x	8"	fresh	3 ESC	fresh	5g/I
58%	15-18µm	400µm	>98%	>99.9%	3.3kPa	10.1kPa
60%	15-18µm	400µm	>93%	>98%	3.1kPa	9.5kPa
65%	20-22µm	400µm	>80%	>95%	2.9kPa	9.0kPa

300 cp	si – 5.66"x	8''	fresh	3 ESC	fresh	5g/I
58%	14-16µm	300µm	>92%	>99.9%	3.7kPa	8.8kPa
60%	14-16µm	300µm	>92%	>98%	3.5kPa	8.2kPa

First coating layer for improvement of mechanical strength

Second coating layer for SCR functionality SCR catalyst candidates

	Vanadia-based (V ₂ O ₅ /WO ₃ -TiO ₂)	Cu-Zeolite (Cu-ZSM-5)	Fe-Zeolite (Fe-β)	Mixed metal oxide (CeO ₂ -ZrO ₂ based)
Function of	V ₂ O ₅ : SCR active center	Cu: NO oxidation to NO ₂	Fe: NO oxidation to NO ₂	CeO ₂ : SCR active center, O ₂ storage
every single compound	WO_3 : promoter TiO_2 : support	ZSM-5: host, SCR reaction, NH ₃ storage	Beta: nost, SCR	ZrO ₂ : thermal stabilizer, NH ₃ storage
SCR activity	High (dependent on V_2O_5 content, best: ~ 3 wt%)		High (at high temperatures up to 600°C, above NH ₃ over-consumption) Low (< 300°C)	High (variable temperature window dependent on Ce/Zr ratio, dopants, surface area + water content)
SCR temperature interval	T ₅₀ : 200°C ≥ 90%: 300°C – 500°C	T ₅₀ : 180°C ≥ 90%: 250°C - 400°C	T ₅₀ : 300°C ≥ 90%: 400°C - 650°C	T_{50} : ~ 250°C or lower \geq 90%: ~300°C – 500/550°C dependent on Ce/Zr ratio + dopants
NH ₃ storage	Low	High	High	Medium
N₂O formation	Increasing formation at >400°C (at 10 ppm NH ₃ slip)	High formation tendency even at low temperatures	No formation Reduces N_2O to N_2 above 400°C	Low formation tendency
Toxicity	V₂O₅ volatility (>690°C)	Concerns due to CuSO ₄ creation	No	No/low


a mile

Lab sample specifications

Sample ID	First layer	Second layer	
#FeZ01	_	Fe-β-zeolite, 120g/l	
#FeZO2	_	Fe-β-zeolite, 60g/l	
#FeZO3	SiO ₂ , 60g/l	Fe-β-zeolite, 65g/l	
#CeZrO1	CeO ₂ /ZrO ₂ /Nb ₂ O ₅ nano slurry, 160g/l	_	
#CeZrO2	CeO ₂ /ZrO ₂ /Nb ₂ O ₅ , 130g/l	_	
#CeZrFeZ01	_	CeO ₂ /ZrO ₂ /Nb ₂ O ₅ , 50g/l + Fe- β -zeolite, 50g/l	
#CeZrFeZ02	SiO ₂ , 60g/l	CeO ₂ /ZrO ₂ /Nb ₂ O ₅ , 50g/l + Fe- β -zeolite, 40g/l	
#CeZrFeZ03	CeO ₂ /ZrO ₂ /Nd ₂ O ₃ /Pr ₆ O ₁₁ nano slurry, 55g/l	Fe-β-zeolite, 55g/l	

Test of lab samples

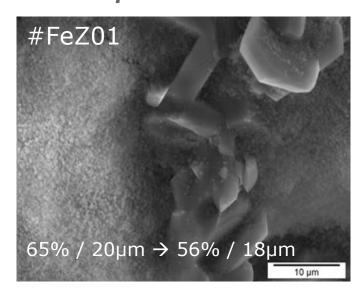
Main gas flow: pressurized air
NO concentration: 250/500 ppm

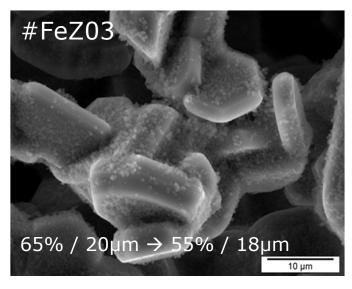
NO concentration: 250/500 ppm

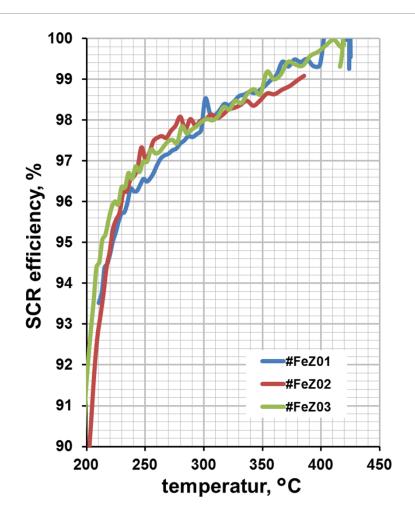
NO₂ concentration: 250/0 ppm

NH₃ concentration: 500 ppm

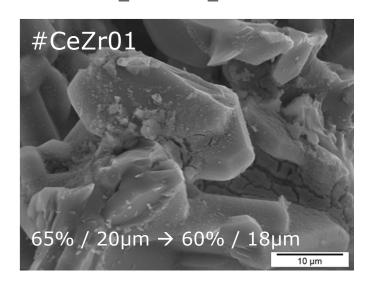
Water content: 10 %

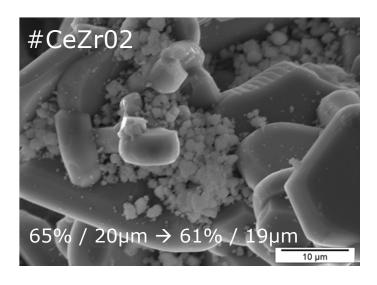

Space velocity: 31,000/h (normalized 20°C, 1013 hPa)

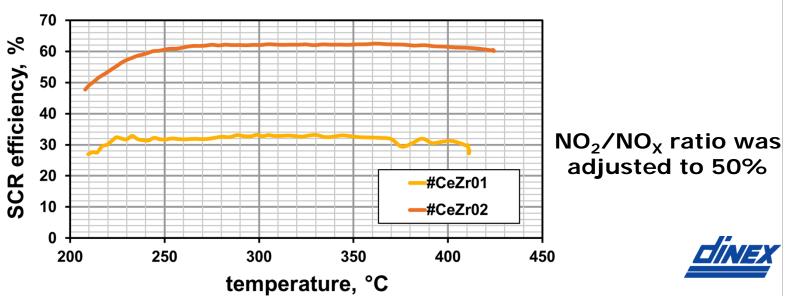

(50,000/h @ 200 °C - 75,000/h @ 450 °C)

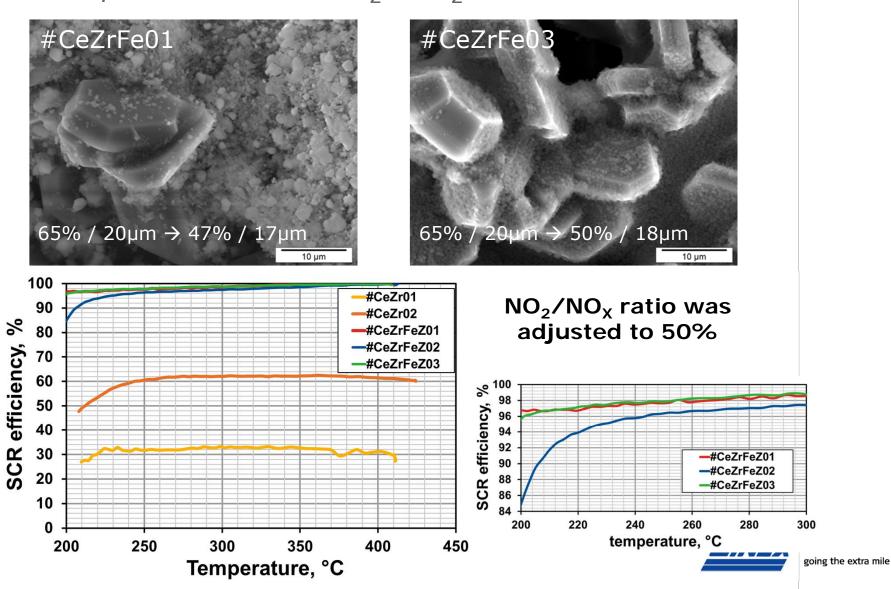

Temperature range: 200 – 450 °C

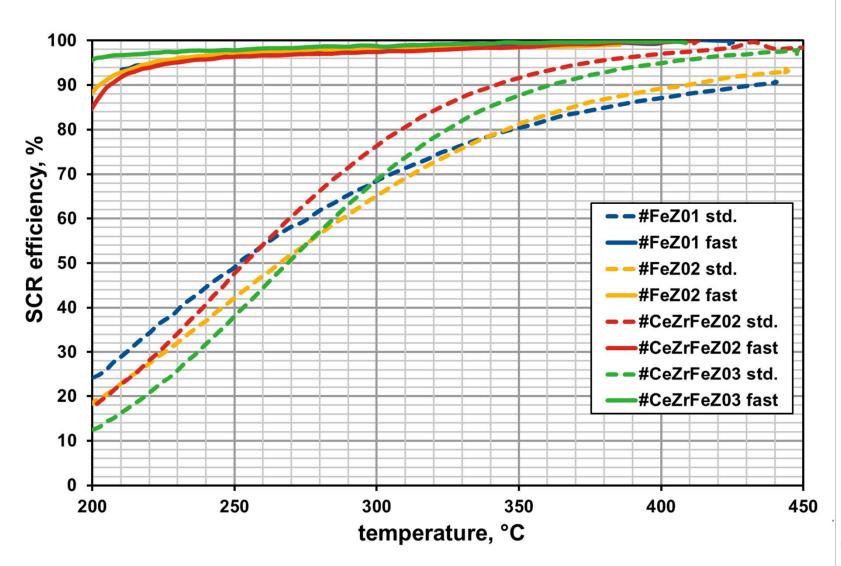
Fe-β zeolite



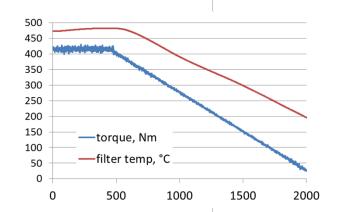


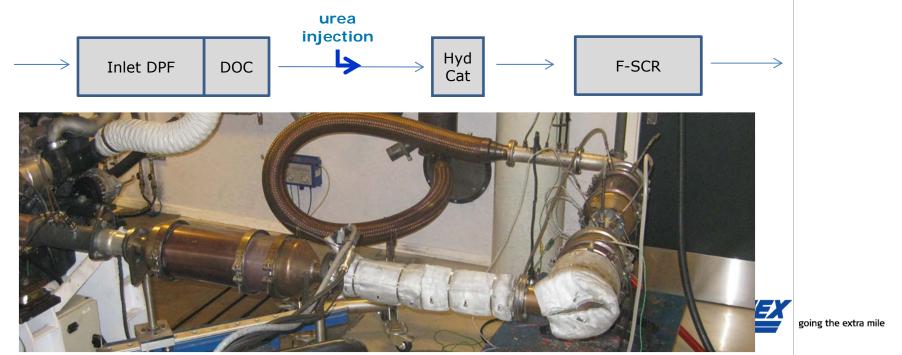

NO₂/NO_X ratio was adjusted to 50%


CeO₂-ZrO₂ based mixed metal oxides

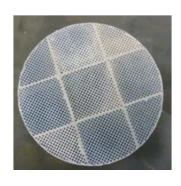


The combinations Fe- β -zeolite with CeO₂-ZrO₂ mixed metal oxides



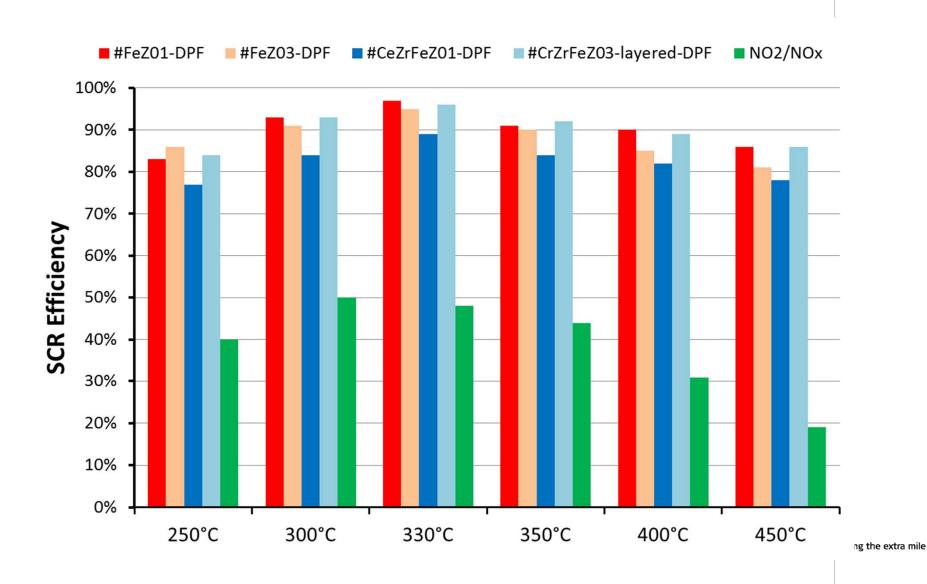

NO_X conversion under standard SCR conditions compared to fast SCR

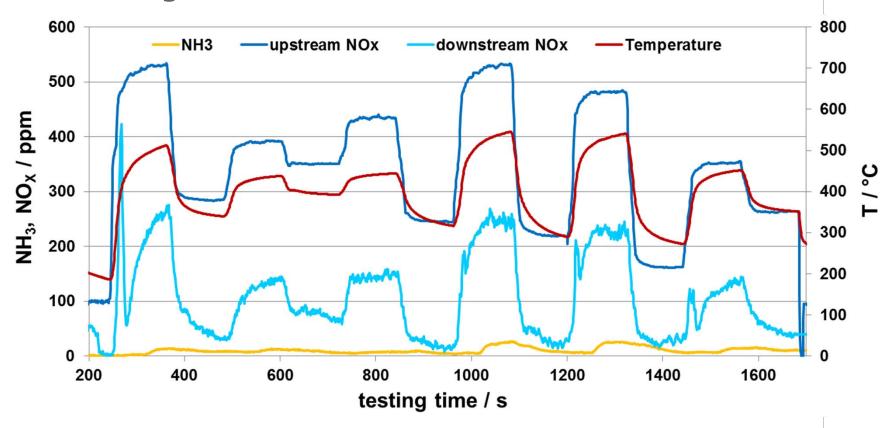
Engine bench test setup


- OM 904 engine, 4.25L 4 Cyl. 129 kW
- Dynamometer: Horiba T250
- Gas analyzer: Horiba MEXA6000-FT
- AdBlue dosing: Emitec Airless urea doser
- An uncoated DPF was mounted upstream to take the soot out of exhaust mass flow

Filters with SCR coatings for engine bench tests

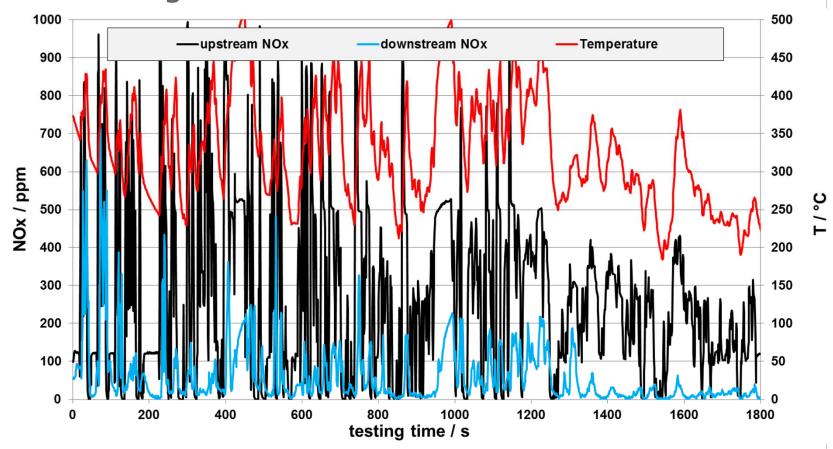
	#FeZ01-DPF	#FeZO3-DPF	#CeZrFeZ01- DPF	#CeZrFeZ03- DPF - layered
PN efficiency, fresh	>99.8%	>99.8%	>99.8%	>99.8%
Back pressure cold flow @ 600m3/h	6.8kPa	6.9kPa	6.2kPa	6.0kPa
Back pressure @ 140kg/h 480°C	3.4kPa	3.5kPa	3.3kPa	3.1kPa


 $60g/I SiO_2$ $60g/I Fe-\beta-Z$


60g/l $CeO_2/ZrO_2/Nb_2O_5$ 60g/l $Fe-\beta-Z$

SCR efficiency for all the test filters

Performance of #CeZrFeZ03-DPF_layered during ESC



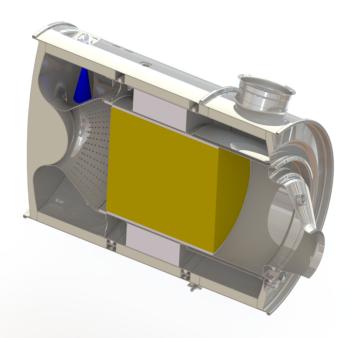
SCR performance over cycle: 70.0 %

Filtration performance over cycle:

Performance of #CeZrFeZ03-DPF_layered during ETC

SCR performance over cycle: 76.3 %

Filtration performance over cycle:

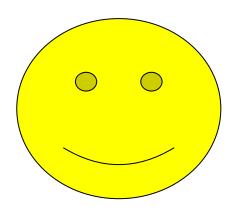


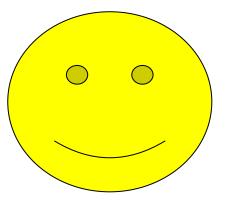
Summary and conclusions

- A high porous SiC with a dual layer coating was presented
 - Enhancing mechanical strength
 - High SCR performance at low catalyst loadings
- Catalyst solutions based on a Fe-β-zeolite and mixed metal oxides (doped ceria/zirconia) have been developed
- ▶ Lab scale and engine bench test show a high SCR efficiency between 80 % and 95 % for the zeolite and zeolite/mixed metal oxide solutions
- High porosity of 65 % combined with the initial layer is the optimum substrate for the used catalysts
- The developed SCR coated DPF is a very promising candidate for future Euro VI systems with reduced packaging size

Thank You for your Attention!

For more details see: SAE2014-01-1484





Index

Contents

