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= Motivation

=*Theoretical Analysis
Pressure drop and soot deposit growth

=Validation with Experiments

=Conclusions



Emission Control: A Chemical Plant in the Exhaust
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*Adding devices = more pressure drop, more space in system layout
*Increasing catalyst loads = more pressure drop, less space in device
v'Optimization requires overcoming these constraints

v'Focus on cell geometry and layout



Evolution of DPF Cell Geometries
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Flow Re-adjustment in Asymmetric Cells
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= Flow continuously readjusts according to the wall resistances

= Soot deposits form on all walls
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Flow Re-adjustment in Asymmetric Cells B
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"Follow up studies (e.g. Wurzenberger et al SAE 2007-01-1137, Tang et al SAE
2009-01-127, Aravelli et al 2007-01-0920) have addressed modeling aspects
of asymmetric cell DPFs, with varying degrees of simplification.

=*|n all cases a single valued “wall/filtration velocity” is adopted without
explicit considerations of additional flow paths over the cell geometry.



Cell Geometries Studied

Same inlet and outlet cell 1 type of inlet 2 types of inlet
1 type of outlet cells 1 type of outlet cells
Square Octo-Square “Valuable Plugging Layout”
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General model for VPL which can be reduced to one for OS



Model Formulation: Two Types of Inlet Channels-1.=

Exhaust gas mass balances for each channel (1, 2, 3) 5 flow paths/velocities
ou

A 6_21 ==V, =1LV 5 =11V,
ou

A, 8_22 = Vi =1LV 0 =115V, 5
ou,

A, E = Vs + 11V, + 11V, s + 115V, 5

where u,, U,, U; are the cross section averaged velocities

Axial Momentum Balances for each channel (1, 2, 3)

oP,
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oz Ay ()

= I1.: Perimeter of each channel, i

—=—a,(uu, —= A, : Cross section of each channel, A,(t): evolving area of cell
0z A, (1) !

prs a,(t): Evolving friction coefficient of each cell
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Model Formulation: Two Types of Inlet Channels-2.=

Wall Momentum Balances (Pressure Drop through each flow path)
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Wy is determined by a separate flow
problem over the wall cross-section
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Model Formulation: Two Types of Inlet Channels-3 g

Soot Deposits Evolution

awlz _ lepg(Pl

Cell cross-section evolution

Ay(t)=A, —-TTLw, —-TI,w,

A2t (t) = Az _H1Wr1 - 1_13W3

ot Ps
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Q(x)=x for x>0 and Q(x)=0 for x<0.
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Soot Transport and Deposition

Boundary conditions
P,=P,, at z=L,

AU +AU=(A AU,
P1=0,=;, & 2=0
where

U, is the average inlet velocity
¢;, is the inlet soot mass fraction.

Solution procedure

0
AU, % == J1LQ(=(V,1o + Viui3)

= Quter initial value problem (evolution equations of the deposits) explicit
intefration

* Inner boundary value problem (flow and soot transport) solved at each step of

op
AU, 8_22 =—@,I1,U(V,1, = V)

outer problem, fulfilling BC with Newton-Raphson

= Advance soot deposit thickness and evolve cross section

®1,02 : the local soot mass fraction in gas phase



Samples Used for Validation — 4 OS DPFs

m
.

FILTER TYPE (0} 0Os1 0S2 0Ss3 0s4
Diameter mm 143.8 | 143.8 | 143.8 | 143.8
Length mm 150.0 | 150.0 | 150.0 | 150.0
Wall permeability (x1E12) m? 1.00 1.00 1.00 |3.00
Oct-Sq wall thickness, wl mm 0.4 0.4 0.4 0.4
Oct-Oct wall thickness, w2 mm 0.4 0.4 0.4 0.4
Oct side, C , mm 1.77 [196 |2.17 |2.44
Sqg side, C,, mm 142 (123 |1.02 |0.75




Soot loading of OS samples: Experiment and Model

Deep bed calculation not-included to see intrinsic curvature effects of Pressure Drop curve
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Evolution of Wall Mass-Flux Ratio: (O to O /O to S)
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Samples Used for Validation — 4 VPL DPFs

FILTER TYPE VPL A B C D

Diameter mm 143.8 | 143.8 |143.8 |143.8

Length mm 108.0 | 140.5 |193.2 |193.2 O
Wall permeability (x1E13) m? 4.00 4.00 3.203 | 3.203

Oct-Sq wall thickness, w, mm 0.254 |0.254 | 0.254 |0.176

Oct-Oct wall thickness, w, mm [0.359 |0.359 |0.359 |0.251

Octsside, C , mm 1.497 |1.497 |1.497 |1.575

Sq side, C , mm | 0.962 |0.962 |0.962 |1.039




Soot loading of VPL samples: Experiment and Model L
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Soot deposits of VPL samples: Experiment and Model L
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Dimensionless Wall Velocities

Evolution of filtration velocities in VPL DPF a
0.005 -
0.0045 Sample A, all samples qualitatively similar
0.004 -
0.0035
0.003
0.0025
0.002 - —'vw12
— vwi3
0.0015 - — w23
— vw2
0.001 e
0.0005
0 | ‘ ‘ ! \ \ \ \ !
0 1 2 3 4 5 6 7 8 9

Soot Load (g/L)



Optimization of DPF designs for constant volume

All samples 2.5 L simulated at identical flow, temperature and soot concentration conditions
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Conclusions

" Asymmetric and Variable Cell geometry DPFs introduce many complexities into the
standard simulation framework of DPFs by requiring the explicit treatment of
additional flow paths in order to properly capture the flow dynamics through the
structure.

® Relevant wall fluxes and velocities have been identified and simulated. Their evolution
at long times (high values of soot loafing) indicates that in the case of OS design a
constant wall flux ratio is established and can be used as a metric to select DPFs with
lower pressure drops. In the more complex case of the VPL design a clustering of all
but one filtration velocity towards a common value is observed as a result of the
complex interactions among the different flow paths.

" Pressure drop in the OS and VPL DPFs still follows a linear evolution with respect to
soot load as the different flows through the common (inlet-inlet) and conventional
(inlet-outlet) flow paths readjust to transport and deposit the soot particles through
the path of least resistance.

" The advent of AVC DPF designs with many degrees of freedom with respect to
filtration/wall velocities, leads to DPF systems with substantially reduced pressure
drop compared to the state-of-the-art.
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