18th ETH-Conference on Combustion Generated Nanoparticles

Asymmetric and Variable Cell Geometry Diesel Particulate Filters

Athanasios G. Konstandopoulos & Margaritis Kostoglou

Aerosol & Particle Technology Laboratory, CPERI/CERTH & Department of Chemical Engineering, Aristotle University Thessaloniki, Greece

Outline

Motivation

Theoretical Analysis

Pressure drop and soot deposit growth

Validation with Experiments

Conclusions

Emission Control: A Chemical Plant in the Exhaust

•Adding devices = more pressure drop, more space in system layout

• Increasing catalyst loads = more pressure drop, less space in device

✓ Optimization requires overcoming these constraints

✓ Focus on cell geometry and layout

Evolution of DPF Cell Geometries

ASYMMETRIC DESIGNS

Young et al SAE 2004-01-0948

dieselnet.com

WAVY

Bardon et al SAE 2004-01-0950

NEW DESIGNS?

Flow Re-adjustment in Asymmetric Cells

OS WAVY ACT computational computational domain domain computational domain inlet channel inlet channel inlet channel wall wall clean loaded clean loaded clean loaded wall wall wall wall wall wall soot soot cake cake søot cake

Konstandopoulos et al, SAE 2005-01-0946

- Flow continuously readjusts according to the wall resistances
- Soot deposits form on all walls

Flow Re-adjustment in Asymmetric Cells

- Follow up studies (e.g. Wurzenberger et al SAE 2007-01-1137, Tang et al SAE 2009-01-127, Aravelli et al 2007-01-0920) have addressed modeling aspects of asymmetric cell DPFs, with varying degrees of simplification.
- In all cases a single valued "wall/filtration velocity" is adopted without explicit considerations of additional flow paths over the cell geometry.

Cell Geometries Studied

General model for VPL which can be reduced to one for OS

Model Formulation: Two Types of Inlet Channels-1

Exhaust gas mass balances for each channel (1, 2, 3)

$$\begin{vmatrix} A_1 \frac{\partial u_1}{\partial z} = -\Pi_1 v_{w12} - \Pi_1 v_{w13} - \Pi_2 v_{w2} \end{vmatrix}$$

$$\mathbf{A}_2 \frac{\partial \mathbf{u}_2}{\partial \mathbf{z}} = \boldsymbol{\Pi}_1 \mathbf{v}_{w12} - \boldsymbol{\Pi}_1 \mathbf{v}_{w23} - \boldsymbol{\Pi}_3 \mathbf{v}_{w3}$$

$$A_{3} \frac{\partial u_{3}}{\partial z} = \Pi_{1} v_{w13} + \Pi_{2} v_{w2} + \Pi_{1} v_{w23} + \Pi_{3} v_{w3}$$

where u_1, u_2, u_3 are the cross section averaged velocities

Axial Momentum Balances for each channel (1, 2, 3)

 $=-\alpha_{3}\mu u_{3}$

 $\Pi_{\rm i}$: Perimeter of each channel, i

 \boldsymbol{A}_i : Cross section of each channel, $\boldsymbol{A}_{it}(t)$: evolving area of cell

 $\alpha_i(t)$: Evolving friction coefficient of each cell

5 flow paths/velocities

Model Formulation: Two Types of Inlet Channels-2

Wall Momentum Balances (Pressure Drop through each flow path)

$$\mathbf{v}_{w12} = (\frac{\mu w_{s1} k_w}{k_w} + \frac{\mu (w_{12} + w_{21})}{k_s})^{-1} (\mathbf{P}_1 - \mathbf{P}_2)$$

$$\mathbf{v}_{w13} = (\frac{\mu w_{eff}}{k_{sw}} + \frac{\mu w_{12}}{k_s})^{-1} (\mathbf{P}_1 - \mathbf{P}_3)$$

$$v_{w2} = (\frac{\mu w_{s2}}{k_w} + \frac{\mu w_1}{k_s})^{-1}(P_1 - P_3)$$

$$v_{w3} = (\frac{\mu w_{s3}}{k_w} + \frac{\mu w_2}{k_s})^{-1} (P_2 - P_3)$$

$$v_{w23} = \left(\frac{\mu w_{eff}}{k_w} + \frac{\mu w_{21}}{k_s}\right)^{-1} (P_2 - P_3)$$

 $w_{\text{eff}}\!\!:$ is determined by a separate flow problem over the wall cross-section

Model Formulation: Two Types of Inlet Channels-3

Soot Deposits Evolution

 $\Omega(x)=x$ for x>0 and $\Omega(x)=0$ for x ≤ 0 .

Soot Transport and Deposition

$$A_1 u_1 \frac{\partial \varphi_1}{\partial z} = -\varphi_1 \Pi_1 \Omega (-(v_{w12} + v_{w13}))$$

$$A_2 u_2 \frac{\partial \varphi_2}{\partial z} = -\varphi_2 \Pi_2 U(v_{w12} - v_{w23})$$

 ϕ 1, ϕ 2 : the local soot mass fraction in gas phase

Cell cross-section evolution

$$A_{1t}(t) = A_1 - \Pi_1 W_1 - \Pi_2 W_2$$

$$A_{2t}(t) = A_2 - \Pi_1 W_{r1} - \Pi_3 W_3$$

Boundary conditions $P_3=P_{atm}$ at z=L, $A_1u_1+A_2u_2=(A_1+A_2)u_o$, $\phi_1=\phi_2=\phi_{in}$ at z=0

where u_o is the average inlet velocity ϕ_{in} is the inlet soot mass fraction.

Solution procedure

- Outer initial value problem (evolution equations of the deposits) explicit intefration
- Inner boundary value problem (flow and soot transport) solved at each step of outer problem, fulfilling BC with Newton-Raphson
- Advance soot deposit thickness and evolve cross section

Samples Used for Validation – 4 OS DPFs

FILTER TYPE	OS	OS1	OS2	OS3	OS4
Diameter	mm	143.8	143.8	143.8	143.8
Length	mm	150.0	150.0	150.0	150.0
Wall permeability (x1E12)	m²	1.00	1.00	1.00	3.00
Oct-Sq wall thickness, w1	mm	0.4	0.4	0.4	0.4
Oct-Oct wall thickness, w2	mm	0.4	0.4	0.4	0.4
Oct side, C _{w1}	mm	1.77	1.96	2.17	2.44
Sq side, C _{w2}	mm	1.42	1.23	1.02	0.75

Soot loading of OS samples: Experiment and Model

Deep bed calculation not-included to see intrinsic curvature effects of Pressure Drop curve

Evolution of Wall Mass-Flux Ratio: (O to O /O to S)

Samples Used for Validation – 4 VPL DPFs

FILTER TYPE	VPL	Α	В	С	D
Diameter	mm	143.8	143.8	143.8	143.8
Length	mm	108.0	140.5	193.2	193.2
Wall permeability (x1E13)	m²	4.00	4.00	3.203	3.203
Oct-Sq wall thickness, w ₁	mm	0.254	0.254	0.254	0.176
Oct-Oct wall thickness, w ₂	mm	0.359	0.359	0.359	0.251
Oct side, C _{w1}	mm	1.497	1.497	1.497	1.575
Sq side, C _{w2}	mm	0.962	0.962	0.962	1.039

Soot loading of VPL samples: Experiment and Model

Soot deposits of VPL samples: Experiment and Model

Evolution of filtration velocities in VPL DPF

Optimization of DPF designs for constant volume

Conclusions

- Asymmetric and Variable Cell geometry DPFs introduce many complexities into the standard simulation framework of DPFs by requiring the explicit treatment of additional flow paths in order to properly capture the flow dynamics through the structure.
- Relevant wall fluxes and velocities have been identified and simulated. Their evolution at long times (high values of soot loafing) indicates that in the case of OS design a constant wall flux ratio is established and can be used as a metric to select DPFs with lower pressure drops. In the more complex case of the VPL design a clustering of all but one filtration velocity towards a common value is observed as a result of the complex interactions among the different flow paths.
- Pressure drop in the OS and VPL DPFs still follows a linear evolution with respect to soot load as the different flows through the common (inlet-inlet) and conventional (inlet-outlet) flow paths readjust to transport and deposit the soot particles through the path of least resistance.
- The advent of AVC DPF designs with many degrees of freedom with respect to filtration/wall velocities, leads to DPF systems with substantially reduced pressure drop compared to the state-of-the-art.

Acknowledgements

We thank Ibiden Co. for making available the experimental data on the OS and VPL DPF designs.

WORKSHOP ANNOUNCEMENT- Oct. 16-17, 2014

אttp://aptstep.certh.gr Confire WORKSHOP ו Combustion Emission Control for Clean and Efficient Vehicles October 16-17, 2014 Thessaloniki, Greece

TOPICS of INVITED LECTURES

Future Fuels - Future Engines Multifunctional Emission Control Devices Challenges in Low Emissions Measurement & Testing Air Quality Issues and Retrofit Approaches

New Journal from Springer

Papers are Due September 1, 2014 for Inaugural Issue at agk@certh.gr

Editors in Chief Athanasios G. Konstandopoulos Mansour Masoudi

Editorial Board

Assanis, Denis Pauly, Tom Birkhold, Felix Bunting, Bruce Bardasz. Ewa Chaterjee, Daniel Collings, Nick Deutschmann, Olaf Fisher, Galen Johnson, John Johnson, Tim Kittelson, David Lox, Egbert Lueders, Hartmut

Ohno, K. Peden, Chuck Pischinger, Stefan Toops, Tod Sappok, Alex Schittenhelm, Henrik Strzelec, Andrea Tomaszik, Dean Vogt, Claus Dieter Voss, Ken Wagner, Robert Walker, Andy

Thank you for your attention!

agk@cperi.certh.gr http://apt.cperi.certh.gr

