


UNIVERSITÄT BERN

18th ETH-Conference on Combustion Generated Nanoparticles June 25, 2014

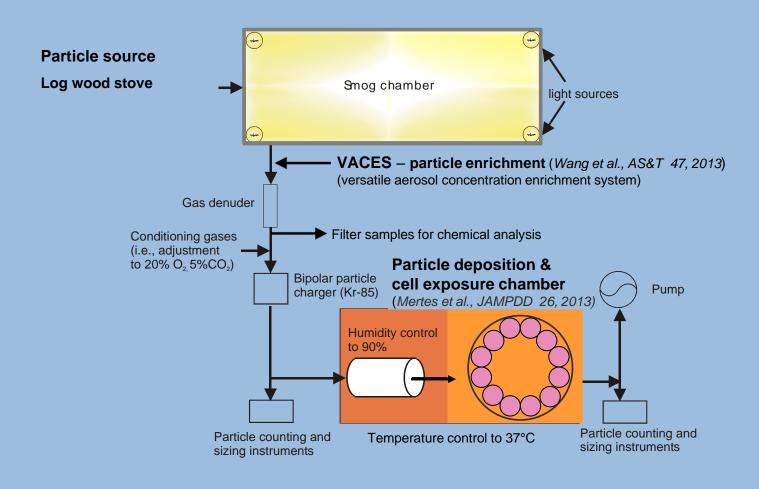
Responses of healthy & diseased airway epithelia to primary and photo-chemically aged aerosols from wood combustion

M. Geiser¹, S. Allenbach¹, M. Krapf², E. Bruns², N. Baumlin³, U. Baltensperger², C. Sioutas⁴, M. Salathe³, J. Dommen²

¹University of Bern, Bern, CH ²Paul Scherrer Institute, Villigen, CH ³University of Miami, Miami, FL, USA ⁴University of Southern California, Los Angeles, CA, USA

Background and Aims

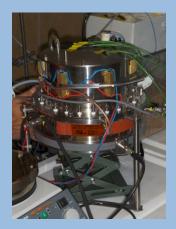
b UNIVERSITÄ BERN

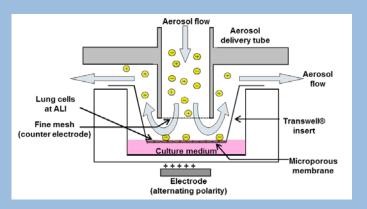

- Adverse health effects of inhaled fine and ultrafine particles
- > Persons with pre-existing lung disease are more vulnerable
 - → Which particle characteristics induce the biological effects?
 - → What biological parameters cause susceptibility?
- Aerosols from wood combustion
- Effects due to different chemical composition but similar concentration of the particles
- In-vitro study simulating the situation in vivo

Experimental set-up

UNIVERSITÄT BERN

3

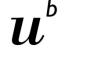

M. Geiser, Uni Bern – June 2014


b UNIVERSITÄT BERN

Methods Particle deposition chamber

- Aerosol conditioning: 37°C, 85-95% RH
- > Aerosol distribution: 12 delivery tubes
- > Particle deposition: e-field: 4 kV/cm, alternating polarity: 1 Hz
- > Total aerosol flow: 600 mL/min, 50 mL/min per tube
- Cell exposure: 12 cell cultures at air-liquid interface (ALI) on Transwell[®] inserts per plate

Particle deposition & cell exposure chamber

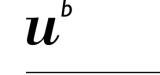

Particle deposition by electrostatic precipitation

u^{b}

Cell culture models

b UNIVERSITÄT BERN

- > Re-differentiated human bronchial epithelial cells
 - Respiratory epithelium with mucus secreting, ciliated & basal cells
 pseudostratified epithelium
 - Tissue with low cell turnover
 - Production & maintenance of air-liquid interface = established ALI
 - Normal and diseased (cystic fibrosis, CF) donors
- Human bronchial epithelial cell line BEAS-2B
 - Monolayers of a single, cuboidal cell type
 - Immortalized, proliferating cells
 - Submersed cultures; reduced cell culture medium for exposure at ALI



Exposure protocol and cell analysis

UNIVERSITÄ[.] Bern

- Cell cultures on microporous filter inserts at ALI
- > Single, short term (2h) exposure to aerosol
- Controls (untreated & filtered-air exposed)
- > Cell analysis within **24h after exposure** (acute)
- > Biological markers
 - Cytotoxicity (necrosis: release of lactate dehydrogenase, LDH)
 - Inflammatory mediator release (cytokines: IL-6, IL-8)

M. Geiser, Uni Bern – June 2014

UNIVERSITÄT

Results Composition of exhaust & particle dose

- Medium and high stove load:
 - Organic compounds dominant
 - Black carbon depending on stove load
 - Constant particle dose (~ 270 ng/cm²)

M. Geiser, Uni Bern - June 2014

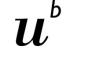
7

Results Cellular responses

b UNIVERSITÄT BERN

- Cytotoxicity
 - Increase of cytotoxicity after particle exposure in all cell models
 - BEAS-2B cells are more sensitive than re-differentiated cells
- IL-6 release
 - Increase in BEAS-2B cells only
- > IL-8 release
 - Trend to increased IL-8 release in all cell models
 - Different baseline release of IL-8 in cell models
- Cause-effect relationship
 - Evidence for correlation of necrosis with distinct particle constituents

Conclusion


UNIVERSITÄT

9

Evidence for adverse effects of primary and aged particles from wood combustion on airway epithelia:

- Increase of cytotoxicity after particle exposure (i)
- Correlation of cytotoxicity and specific particle components (ii)
- Release of cytokines dependent on cell model (iii)
- Different responses of epithelial cell line and differentiated (iv) epithelial cells

M. Geiser, Uni Bern – June 2014

Acknowledgements

UNIVERSITÄT BERN

- Core group Uni Bern
 - N. Jeannet, L. Künzi, S. Schneider, B. Kupferschmid
- > Center for Atmospheric Science, University of Cambridge, Cambridge, UK
 - M. Kalberer
- > Institute for Aerosol and Sensor Technology (IAST), Hochschule für Technik (FHNW), Windisch, CH
 - H. Burtscher, M. Fierz
- Swiss National Science Foundation (CR3213_140851)
- Federal Office for the Environment (FOEN)
- > European Community's Seventh Framework Programme (FP7/2007-2013), grant agreement no. 290605 (PSI-FELLOW)
- > Lungenliga Schweiz