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Improved Determination of Soot Mass Emissions from 
Aircraft Turbine Engines Using Particle Effective Density
Lukas Durdina1,2, Benjamin Brem1,2, Manuel Abegglen3, Berko Sierau3, and Jing Wang1,2
1 Air Quality and Particle Research Group, Laboratory for Analytical Chemistry, Empa, Dübendorf, Switzerland
2 Institute of Environmental Engineering, ETH Zürich, Zürich, Switzerland
3 Institute for Atmospheric and Climate Science, ETH Zürich, Switzerland

Method
- measure non-volatile PM mass (equivalent / refractory black carbon; BC)
- measure particle size distributions (PSD)
- fit lognormal distributions and find dependence on engine thrust
- determine effective density distributions from mass-mobility measurements
- model the particle transport efficiency from the probe tip to the instruments
- iterate the PM mass derived from the lognormal PSD model and the effective
  density distributions until it is equal to the measured PM mass
- correct the model PM mass distribution using the inverted penetration function
- calculate the line loss correction factor as a ratio of the corrected and uncorrected
  (measured) PM mass

Sampling and measurement
- CFM56-7B26/3 engine (Boeing 737, Airbus A320) tested in an engine test cell over
  the entire thrust range from idle to maximum power
- primary PM measurements on the diluted line (factor ~10:1; PM line)
- ancillary PM measurements on the undiluted line (Annex 16 line)
- up to 3 systems built to the same standard¹ were deployed in parallel  

Particle transport model
- UTRC particle transport tool² uses basic aerosol mechanics theory for particle
  transport efficiency prediction in the aircraft exhaust sample lines 
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Effective density: distributions and mean
- power law fits of experimental data (CPMA mass over mobility equivalent volume)
- increase with engine thrust: primary particle size growth and change of the
  internal structure from amorphous to crystalline (Liati et al., 2014, submitted to 
  Env. Sci. Technol.)
- mean effective density decreased with engine thrust (GMD shifted to larger 
  diameter particles that have lower effective density)
- could be approximated as unit denisty (1000 kg/m³) for this engine 

Total PM mass (TPM) and measured BC mass
- TPM calculated from the effective density distributions and PSD agreed with the
  BC mass measured by the MSS 

Particle size distribution
- Geometric mean diameter (GMD) and the geometric standard deviation
  (GSD) determined from the lognormal fits increased linearly with engine thrust

Results and outlook
- line loss correction factor for PM mass ranged from 2.75 at engine idle to 1.35 at
  maximum power conditions using the size-dependent effective density
- the unit density assumption provided a similar range of correction factors, but
  might have overestimated the losses at high thrust as well as underestimated at
  low thrust
- probe inlet temperature needs to be measured for a more accurate thermophoretic
  loss prediction
- future work will focus on intercomparison with models that do not use measured
  effective density and particle size

IntroductionIntroduction
- aerosol sample is drawn from the engine exit plane to the instruments through
  more than 30 m long sample lines
- particles stick to the tube walls due to diffusional and thermophoretic effects
- first principle model predicts well the particle transport efficiency in terms of 
  particle number concentration
- PM mass losses are more complicated - particle effective density changes with size
- a reliable estimate of the PM at the engine plane essential for the emissions
  quantification and modeling 
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