Size Distribution of Particles from a Diesel **Direct-Fired Heater**

MOBILITY Faculty of Mechanical **Engineering**

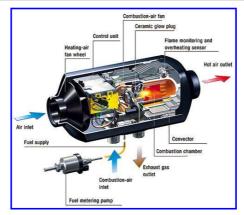
VEHICLE CENTER OF SUSTAINABLE

Ľubomír Miklánek1, Michal Vojtíšek-Lom1,2

1: Josef Bozek Vehicle Centre for Sustainable Mobility, Czech Technical University in Prague, 2: Institute for Automobile, Combustion Engine and Railway Engineering, Czech Technical University in Prague Contact: lubomir.miklanek@fs.cvut.cz, tel. (+420) 224 351 855, (+420) 246 003 709; michal.vojtisek@fs.cvut.cz, tel. (+420) 774 262 854

Background

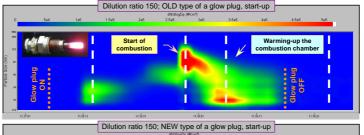
- **★** Diesel direct-fired heaters (DFHs) are generally used as an independent heat source not only in the automotive industry.
- * Independent heat sources will become more and more necessary with increasing efficiency of combustion engines and deployment of electric drives to heat the passenger compartment.
- * There are currently no particulate matter (PM) emission limits for DFHs.
- **★** Especially little is known about particle size distribution in exhaust emissions of DFHs.

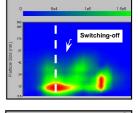

Goal

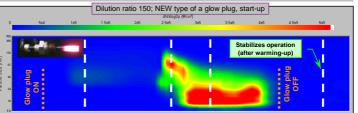
To conduct preliminary characterization of PM emitted by a typical production DFH during various operating regimes.

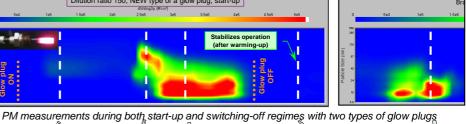

Approach

- ⇒ A sample of PM from DFH exhaust was diluted by a rotating disc microdiluter (MD-19, Matter Aerosol) and fed into a particle classifier and spectrometer (Engine Exhaust Particle Sizer (EEPS), TSI).
- Measurements were taken in regimes:
 - -- start-up of the DFH (ambient temperature approx. 20°C),
 - -- minimal power output regime (P0),
 - -- maximal power output regime (P9),
 - -- switching-off the DFH.


Moreover, two different types of glow plugs were applied in order to determine the effect of glow plug on PM concentrations.




Look inside a conventional diesel DFH with a Iow-pressure fuel system (http://www.eberspaecher.com)



White smoke emissions during the both (a): start-up and (b): switching-off regimes

3.0E+06 Steady-state regimes both 2.5E+06 # 2.0E+06 of minimal and maxima power output 1.5E+06 6 6.04 10.8 114.3 14.1 19.1 25.5 34 80.6 80.6 80.6 80.6 1191 1191 1191 1191 143 Size of particles [nm]

ன் 3.5E+07 3.0E+07 2.5E+07 2.0E+07 1.5E+07 1.0E+07 5.0E+0€ 0.0E+00

3.0E+08 2.5E+08 2.5E+08 ± 2.0E+08 1.5E+08 Fuel ON 1.0E+08 Ĕ 0.0E+00 1.4E+08

.5E+08 Old type of 5.04 5.06 10.8 10.1 19.1 34 5.55 36.4 50.4 108 108 Size of particles [nm] 2.0E+08 ਨੂ 1.8E+08 Switching-off 1.6E+08 1.4E+08 1.6E+08 1.2E+08 1.0E+08 8.0E+07 6.0E+07 (5) 4.0E+07 34 45.3 60.4 80.6 108 143 191 255 340

Acknowledgments:

Work sponsored by:

- the Czech Science Foundation Grant no. 13-01438S (BIOTOX)
- the EU Regional Development Fund in OP R&D for Innovations (OP VaVpI) and Ministry **Education**, Czech Republic, project CZ.1.05/2.1.00/03.0125 Acquisition of Technology for Vehicle Center of Sustainable Mobility.
- the Technological Republic, Czech Agency, programme Centres of Competence, project # TE01020020 Josef Bozek Competence Centre for **Automotive Industry**
- BRANO GROUP, provider a.s., independent air-heating system.
- the salary of the first author was funded by EU-EBRD program, project CZ.1.07/2.3.00/30.0034, Support of Research Teams at Czech Technical University in Prague.

Conclusions

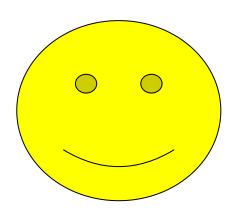
Size-distribution

of undiluted PM

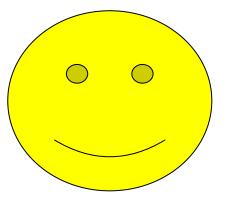
1.0E+08

8.0E+07

6.0E+07


4.0E+07

* Particle size distributions from DFH have one or two peaks mostly in the tens of nm range, not dissimilar from diesel engine exhaust.


6.04 6.04 10.8 10.8 11.3 14.3

- * Nanoparticles (< 100 nm) have been found in DFH exhaust in concentrations of 10^6 ÷ 10^7 #/cm^3 during stabilized operation and up to 10^9 #/cm^3 during start-up and switching-off.
- * During stabilized operation, nanoparticles concentrations decreased with increasing power level (which increases temperature in combustion chamber), see Graph 6.
- * Particle emissions during start-up and warm-up were affected by the type of the glow plug used.

Index

Contents

