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CONCLUSIONS   FUTURE WORK  

 Diesel particulate filters (DPF) for high efficient removal of particulate matter from diesel exhaust gas 

 Increasing soot amount in the DPF  higher back pressure  higher fuel consumption of the engine 

 Oxidation of trapped soot in the DPF [1-3] 

 Soot reactivity depends on physicochemical properties of emitted particulate matter [4, 5] 

 Particulate number and mass dependent on in-cylinder mixture formation and on combustion process [6, 7] 

 Influence of different (alternative) diesel fuels and engine operating parameters on 

 in-cylinder mixture formation, combustion and 

 physicochemical properties of engine-out particulate matter 

Summary of physical and chemical fuel properties 

Optically-accessible single-cylinder diesel engine: optical combustion analysis, particle emissions Light-duty production diesel engine (Daimler, OM 651): 1000 rpm, 25 %, SOI = -6 °CA BTDC, EGR = 0 % 

Displacement 500 cm3 

Injection pressure Up to 160 MPa 

Boost pressure 0.105 MPa – 0.30 MPa 

Boost temperature 293-363 K 

Piston bowl shape Omega 

Injector type Bosch, solenoid, 6-hole 

Injection system Common rail 

Exhaust gas 

recirculation 

Adjustable with different 

gases (air, N2, CO2,…) 

fuel Density 

[kg/m3] 

Cetane number 

[-] 

Lower calorific 

value [MJ/kg] 

Viscosity  

[mm2/s] 

Sulfur content 

[mg/kg] 

RME content 

[%] 

Reference diesel fuel (B0) 834.2 52.5 42.5 2.885 < 5 < 0.1 

Diesel fuel DIN EN 

590:2010-05 (B7) 
836.7 53.1 42.2 2.470 5.3 4.5 

Rapeseed methyl ester 

(RME, B100)  
882.8 52.5 37.5 4.438 < 5 > 99 

Di-n-butyl ether  (DNBE) 767.0 - 38.0 - < 5 < 0.1 

Combustion 

Combustion 

spectroscopy 

SMPS, Pegasor,  

filter weighing  

HR-TEM Thermogravimetry 

OH* Soot 

Mobility diameter, 

number, mass 

Primary particle 

diam., morphology 

Soot reactivity 

Injection / mixture formation 

Air ratio Gas phase Liquid phase 

Laser-induced exciplex fluores- 

cence (LIEF) 

0 10 0 5 

λ Intensity [a.u.] Intensity [a.u.] 

0 2500 400 

Intensity [a.u.] 

4092 0 

100nm 

20nm 

Tmax 

Displacement 2143 cm3 

Engine 

design 

4 cylinders (in-

line) 

Compression 

ratio 

16.2 : 1 

Injector type Delphi, piezo 

Injection 

system 

Common rail 

Electronic 

control unit 

Open access 

 Differences in soot formation and oxidation process with advanced boost pressures  

high differences in particle number emissions and particle diameters 

 High differences in combustion between the fuels  

 different particle number emissions and particle diameters 

 High differences in soot reactivity, in particle number and mass emissions for different boost 

and injection pressures as well as for different diesel fuels 

 LIEF measurements for visualization of injection and mixture formation processes 

 Further research with alternative diesel fuels (first and second generation bio fuels) 

 Correlation between primary particle structure and reactivity of particulate matter? 

 Correlation between chemical composition of the particulate matter and its reactivity? 

 Spatially resolved differences in combustion?  

 Tmax: Temperature with highest oxidation rate  high reactivity = low Tmax; low reactivity = high Tmax 

 Higher reactivity of soot generated with higher injection (pi, left) and with higher boost pressures (pb, right): 

ΔTmax between engine operating parameters significant higher for B7 (~170 °C) than for B0 fuel (~80 °C) 

 B7 soot more reactive than B0 soot: low difference for the low injection and the low boost pressure (4-8°C), 

highest difference for the high injection and for the high boost pressure (~70-80 °C) 

De-volatilized particulate matter 

5 % oxygen, 95 % nitrogen 

Heating rate 5 °C/min 

De-volatilized particulate matter 

5 % oxygen, 95 % nitrogen 

Heating rate 5 °C/min 

 Lower particle number and mass at higher injection and at higher boost pressures (for B7 and for B0 fuel) 

 Higher particle number for B0 than for B7, but lower particle mass for B0 than for B7 because of additive 

compounds in the B7 fuel (e.g. sulfur) 

 Particulate number and particulate mass emissions 

Scanning Mobility Particle Sizer (conditioned partial-exhaust flow) Pegasor Particle Sensor (PPS)  

  

 Soot reactivity of de-volatilized particulate matter (400 °C in nitrogen) at exhaust gas relevant conditions 

pi = 1000 bar 

Vi = 15 mm3 

pi = 1000 bar 

Vi = 15 mm3 

  Shorter ignition delay with increasing boost pressures for B0 fuel (top left) 

 Shorter / weaker diffusive combustion at high boost pressures for B0 fuel 

 Lower particle number concentrations (PN) / smaller particle diameters at 

advanced boost pressures for B0 fuel (top right) 

DNBE: very short ignition delay, intensified premixed combustion over the whole 

combustion phase (bottom left)  very low PN (bottom right) 

B0 / B7: longer ignition delay, longer / intensified diffusive combustion 

 higher PN / larger particles 

B100: shorter diffusive combustion  higher PN / smaller particles 

 Influence of boost pressure on combustion and on physical properties of emitted particles (B0) 

 Influence of different diesel fuels on combustion and on physical properties of emitted particles 

pi = 1000 bar, pb = 1,05 bar, Hfuel = constant pi = 1000 bar 

pb = 1,05 bar 

Hfuel = constant 
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