

Wir schaffen Wissen – heute für morgen

Emissions from HFO combustion in a ship research engine and associated secondary organic aerosol formation potential Imad El Haddad – Paul Scherrer Institut Zurich, 30 June 2015

- ⇒ Maritime transport globally important:
 >200 Mio Tons of fuel per year
 (21% of the total global fuel consumption)
- ⇒ Substantial contribution anthropogenic PM: coastal regions up to 50%, but little is known
- \Rightarrow No stringent regulations:

→ <u>Heavy fuel oil (HFO):</u> used mainly on open ocean (170 Mio. Tons) high sulfur content (limit 3.5%)

→ <u>Marine gas oil (MGO):</u> used in controlled areas/harbors (43 Mio. Tons) less viscous low sulfur content (limit 1%)

Only a minor fraction of the organic aerosol emissions is identified...

Sippula et al., EST, 2014

Sippula et al., EST, 2014

Objectives

Study emissions from ship engines run on HFO and MGO

Platt et al., 2013; Bruns et al., 2014

Bruns et al., 2014

Ship engines

Project overview: WOOSHI

Pieber et al., in prep

PAUL SCHERRER INSTITUT

HelmholtzZentrum münchen

Deutsches Forschungszentrum für Gesundheit und Umwelt

Queensland University of Technology

Carnegie Mellon University

Experimental setup 1/2

- can simulate operation of differen modern engines
- operated with HFO and MGO
- operated at cruising conditions (50%)

Setup at the University of Rostock

Experimental setup 2/2

Example

PAUL SCHERRER INSTITUT

Response to dilution

Response to heat

Response to heat

PAUL SCHERRER INSTITUT

Estimated volatility and half-times

6

 \Rightarrow Most of the compounds are estimated to be semi-volatile (consistent with C₂₀-C₂₅ alkanes)

PAUL SCHERRER INSTITUT

Estimated volatility and half-times

- \Rightarrow Most of the compounds are estimated to be semi-volatile (consistent with C₂₀-C₂₅ alkanes)
- \Rightarrow At atmospherically relevant concentrations (1-10 μ g/m³), half-lifes shorter than 1 day