

History and Future of Particle Number Legislation in Europe

The Particle Measurement Programme (PMP)

Jon Andersson¹, Giorgio Martini², Andreas Mayer³

19th ETH-Conference on Combustion Generated Nanoparticles

ETH Zentrum, Zürich, Switzerland. July 1st 2015

1 – Ricardo UK 2 – JRC, Italy 3 – TTM, Switzerland

Delivering Excellence Through Innovation & Technology

www.ricardo.com

© Ricardo plc 2015

History and Future of Particle Number Legislation in Europe

• Setting the Scene

- Inception and Scope of the Particle Measurement Programme (PMP)
- The Regulatory Particle
- Determination of a PN Limit Value
- Relationship between mass and number
- Benefits delivered by the particle number metric
- Future Directions
- Wrap-up

Setting the Scene: What were the historic drivers for particle number legislation? The 1990's

- Drivers
 - EPEFE (aromatics & S); Auto Oil II (PM as future issue); COMEAP (and others) concerned about the long term effects of PM air pollution
 - Swiss and EU Govts, led by the UK
 - PM pollution presented the greatest health (and economic) threat
 - Submicron particles from diesels greatest future health challenge
- Enablers
 - Fuel S just reduced in diesel and gasoline
 - DOC and TWC becoming widespread
 - Peugeot introducing DPF along with necessary engine measures
- Open questions
 - Substantial pressure on the automotive industry to develop some new technology solutions
 - Still some concerns on the relative impacts of fuels and engines (plus aftertreatment)

Drivers for PN Regulations

Final

Setting the Scene: What were the historic drivers for particle number legislation? The 1990's

- The UK Govt of the time favoured a greener transport agenda, and its DETR co-funded research into PM emissions sources with oil and motor industries
- DETR/SMMT/Concawe Particulate Research Programme was established, which explored key knowledge gaps:
 - Particles & PM chemistry from LDV and HD engines of different technology levels
 - Impacts of aftertreatment, fuels and, to a lesser extent, lubricants
 - Instrumentation and measurement issues, and sampling influences

- The variability in the gravimetric PM was as large as the mass measured, so if DPFs were to be mandated, a new PM method, or alternative approach was required
- **DETR/SMMT/Concave demonstrated the poor repeatability of PM** gravimetry at post-DPF levels, and the potential for a particle metric

Andersson and Wedekind, DETR/SMMT/CONCAWE Particulate Research Program 1998-2001. Summary Report. Ricardo Consulting Engineers

DETR/SMMT/Concawe demonstrated the poor repeatability of PM gravimetry at post-DPF levels, and the potential for a particle metric

 Particle size distribution data showed good resolution between trap-equipped and conventional oxidation catalyst-equipped diesels, but only at low speeds...

 To ensure resolution of DPF and non-DPF technologies, it seemed necessary to either discriminate by particle size range, or discriminate based on carbon content, or both

History and Future of Particle Number Legislation in Europe

- Setting the Scene
- Inception and Scope of the Particle Measurement Programme (PMP)
- The Regulatory Particle
- Determination of a PN Limit Value
- Relationship between mass and number
- Benefits delivered by the particle number metric
- Future Directions
- Wrap-up

Inception and scope of the PMP Programme

- RICARDO
- The UK Govt reviewed the conclusions of the DETR/SMMT/Concawe programme:
 - PN promising, but not (yet) suitable for regulatory use
 - Soot health effects proven but size and number impacts uncertain
- Previous Euro PM limit values had failed to mandate the use of DPFs
- 'Precautionary principle' invoked elimination of carbon particles via the use of DPFs was imperative on health grounds
 - but this couldn't be achieved without an appropriate measurement method
- UN-ECE Particle Measurement Programme (PMP) was conceived, chaired by the UK
- Political will and drive came from the EC, but PMP operated under the auspices of UN-ECE to include Switzerland's expertise, and other parties
- PMP's AIM was to identify a new method that
 - "Complements or replaces existing mass measurement method"
 - Measurement capability for modern **diesel engines**
 - Pre and post PM aftertreatment
 - [Alternative interpretation with and without carbon present]

The PMP Comprised Three Phases

Final

Phase I (2001 – 2002) examining different candidate measurement systems and measurement metrics [Substantial Swiss Input] Mass, number, size, EC, active surface, chemistry Phase II (2002-2003) evaluated a range of promising measurement techniques and sample conditioning systems and recommended the most suitable

Phase III (2004-2010) validated the recommended measurement techniques via inter laboratory test programmes: Reliability, repeatability and reproducibility, methodology

- Validation for light duty testing completed in 2006 and reported in 2007
- Validation for heavy-duty testing completed in 2009 and reported in 2010
- PMP working group recently revived and continues into 2015

The Measurement System Defines The "Solid" Particle Measured

- Measurement employs a condensation nucleus counter, but uses sample pre-conditioning to eliminate the most volatile particles which may contribute significantly to variability
- Solid particles defined by the measurement equipment
 - ~23nm to 2.5µm and surviving evaporation in the range 300°C to 400°C (350°C)
 - Analogous to heated FID hydrocarbon method
- System sufficiently sensitive to determine differences in fill-state of DPF; repeatability as low as 2% with non-DPF

History and Future of Particle Number Legislation in Europe

- Setting the Scene
- Inception and Scope of the Particle Measurement Programme (PMP)

• The Regulatory Particle

- Determination of a PN Limit Value
- Relationship between mass and number
- Benefits delivered by the particle number metric
- Future Directions
- Wrap-up

Definition of a non-volatile particle

What does a European regulatory non-volatile particle look like?

Final

- Calibration was, and remains, a challenge!
 - Particle Concentration Reduction Factor (PCRF) corrects for losses and dilution inaccuracies in the measurements

protects first diluter from particle contamination

History and Future of Particle Number Legislation in Europe

- Setting the Scene
- Inception and Scope of the Particle Measurement Programme (PMP)
- The Regulatory Particle
- Determination of a PN Limit Value
- Relationship between mass and number
- Benefits delivered by the particle number metric
- Future Directions
- Wrap-up

PN limit value derivation

Determination of Particle Number Limit Value (Light-duty Diesel) of 6 x 10¹¹ particles/km included many factors

Final

RICARD

History and Future of Particle Number Legislation in Europe

- Setting the Scene
- Inception and Scope of the Particle Measurement Programme (PMP)
- The Regulatory Particle
- Determination of a PN Limit Value
- Relationship between mass and number
- Benefits delivered by the particle number metric
- Future Directions
- Wrap-up

Current PN limits in EU and CH are there to Mandate DPFs, and the **PM** limit is of no consequence in this respect

- There is no relationship between PM and PN embedded in European regulations
- Several studies have shown that for diesels. 1mg equates to between 10^{12} and $3x10^{12}$ particles
- European PN standards are much tougher than PM standards
 - Euro 6 LDD regulations require 6x10¹¹ particles and 4.5mg
 - 4.5mg could equate to >10¹³/km
 - Applications with DPFs can deliver $<10^{10}$ particles and well below 0.5 mg
- The PN regulation effectively mandates DPFs and has also ensured they have high efficiencies
- PM remains part of the regulation
 - Volatiles are still controlled

History and Future of Particle Number Legislation in Europe

Final

- Setting the Scene
- Inception and Scope of the Particle Measurement Programme (PMP)
- The Regulatory Particle
- Determination of a PN Limit Value
- Relationship between mass and number

• Benefits delivered by the particle number metric

- Future Directions
- Wrap-up

Benefits of the PN legislation

What the Particle Number Approach has Delivered

- Proven effectiveness of mandating DPF fitment to all LD and HD diesel on-road engines
 - PN widely applied to diesel certification across Europe
 - High efficiency DPFs mandated and 'effective' PM emissions reduced to ≤ 0.2 mg/kWh / 0.2 mg/km (mass metric cannot force this)
 - Primary PM_{10} / $PM_{2.5}$ reductions in European cities
 - Better filters for low back pressure and high efficiency developed
- Number of applications equipped with DPFs in Europe is at least 30 million
 - At average mileage of 10,000 km / year, PN emissions at the limit value and engine-out emissions at 5x10¹³/km, total PN emissions reduced by >10²⁵ /year
- Reductions in urban PM are delivering health benefits
 - Post-DPF PN vehicle emissions levels are often lower than in the intake air
 - Combined DPF and SCR systems now promise low PM with low NO₂ in the urban area

History and Future of Particle Number Legislation in Europe

- Setting the Scene
- Inception and Scope of the Particle Measurement Programme (PMP)
- The Regulatory Particle
- Determination of a PN Limit Value
- Relationship between mass and number
- Benefits delivered by the particle number metric

• Future Directions

Wrap-up

Future of PMP Future Regulatory Directions – Near Term

- DISI PN at Euro 6c will align with light-duty diesel (6x10¹¹ particles/km)
 - Possibly achievable without a gasoline particle filter, but throughout vehicle life?
 - GPF applications are already being developed for certification and safe in-use compliance
 - Suitability of the current PN method for this SI engines must be proven
- Real Driving Emissions (RDE) requirements are leading research into the development of PN-PEMS for certification purposes
- Widened application (relative to Swiss Ordinance) of PN controls to NRMM at Stage V to include:
 - Wider power-bands; some spark ignition as well as diesel; new application types
 - PN from active regenerations and open engine breather vent systems

Engine Classes Possibly Subject to PN Control at Stage V

 Small diesel engine class; SI also included

Diesel only above 37kW

19kW -37kW

>37kW < 56kW

- 56kW 129kW

>130kW 560kW • Dominant category in NRMM

- Technologies similar to on-road HDD
- Substantial applications
- Technologies similar to on-road HDD

Future of PMP

Future Regulatory Directions – Later?

- The current PN regulation was developed for diesel, so is restricted to the size range above which carbonaceous particles are to be found (> ~20nm), and works well!
 - With low carbon emitting engines and vehicles: SI liquid, SI gas, diesels with DPFs, it is possible that numbers of particles equivalent to those seen from non-DPF applications are being emitted below the measurement range of the current system
 - Recent research has shown that
 - Smaller non-volatile particles do exist
 - DPFs capture these smaller particles with high efficiency
 - Emissions from SI applications may be very high, *especially without GPFs*
 - With some modifications, the existing measurement approach could be adapted to a lower size threshold of ~10nm, but no lower
 - Calibration challenges increase hugely with lower d50 than 10nm
 - Complete elimination of volatile particles may need catalytic approach
 - Change to 10nm d50 could be achieved if it is proven necessary

History and Future of Particle Number Legislation in Europe

- Setting the Scene
- Inception and Scope of the Particle Measurement Programme (PMP)
- The Regulatory Particle
- Determination of a PN Limit Value
- Relationship between mass and number
- Benefits delivered by the particle number metric
- Future Directions

Wrap-up

Wrap-up Wrap-up

- Political will, technological maturity in engine control and aftertreatment, the right fuel, strong health evidence for reducing PM and common ground between stakeholders – as well as the need for improved measurements - drove the development of a new measurement metric
- PMP took ~10 years to investigate and develop the PN metric
 - But for LDD the mechanism of legislation was in place after only 3 years
- PN delivers increased sensitivity and accuracy in quantifying diesel particle emissions
- A PN limit was developed that forced diesel emissions to be reduced by >98%: a reduction readily achievable by existing emissions control technologies
- The twin aims of developing a new metric and forcing technologies that eliminate carbon particle emissions from diesel engine exhausts were fully achieved
- Future application of the PN approach to spark-ignition engines and challenging exhaust chemistries, plus the simplification of calibration processes, are the subject of on-going research
- Finally, a question: PN emissions will soon be regulated for on- and off road, CI and SI applications, is it time to measure success with a number-based AQ method?

Thanks for listening

Final

"Not everything that counts can be counted, and not everything that can be counted counts..."

> "but counting particles counts!"