Santiago - Bogotá – Mexico – Sao Paulo --- within VERT- SDC Swiss Agency for Development and Cooperation

CALAC Clean Air for Latinamerican Mega Cities Air Quality Challenges of a Megacity at 2600 m above Sea Level

A.Mayer

Last Decade: What happened?

Pioneered in the mid-sized Brazilian city of Curitiba in the 1970s, Bus Rapid Transit increased bus speeds and improved road safety by placing high-capacity buses within committed bus lanes which channel buses to a series of fixed stations, similar to light-rail or metro systems. Inspired by the success of Curitiba's system, cities such as Mexico City, Bogotá and Quito have more recently made BRT the linchpin of their transit network, to considerable acclaim from the riding public and international observers alike.

Robert Banick, A Research Assistant at the Council on Hemispheric Affairs (COHA) http://www.citymayors.com/transport/brt-latin-america.html

Fuel Quality

Diesel Fuel Standards have improved in many Latin America Countries during the last decade to fullfill engine manufacturers requirements.

Emission Standards in Latin America Cities

COUNTRY	National Annual PM ₁₀ and PM _{2.5} Standards ^{27*}	Maximum Sulfur Level in Diesel Fuel	Road Sector Diesel Use (kilotons of oil equivalent by year)	Number of Registered Vehicles²	Emissions Standards for New Vehicles ^{29*}
ARGENTINA ³⁰	PM ₁₀ : None PM _{2.5} : None	1,500 ppm (500 in Buenos Aires, Rosario, Mar del Plata, and Bahía Blanca)	7,212 (2008)	11 MM (2011)	LDV, HDV, and Buses: Euro V ³¹
BOLIVIA ³²	PM ₁₀ : 50 μg/m³ PM _{2.5} : None	5,000 ppm	1,058 (2010)	1.1 MM (2011)	Buses: Euro III (La Paz) ³³
BRAZIL	PM ₁₀ : 50 μg/m³ PM _{2.5} : None	1,800 ppm (Between 50 and 500 in major cities) ³⁴	28,732 (2009) ³⁵	64.8 MM (2010) ³⁶	LDV: Euro IV HDV: Euro V
CHILE	PM ₁₀ : 50 μg/m³ PM _{2.5} : 20 μg/m³	15 ppm ³⁷	3,534 (2010) ³⁸	3.4 MM (2010) ³⁹	LDV and MDV: Euro V HDV: Euro V (from Sept. 2014) Buses: U.S. 2004 NO _x / U.S. 2007 PM ⁴⁰
COLOMBIA ⁴¹	PM ₁₀ : 50 μg/m³ PM _{2.5} : 25 μg/m³	50 ppm ⁴²	3,754 (2010)	7.2 MM (2011)	LDV: Euro IV HDV: Euro IV (from 2015) Buses: Euro II
ECUADOR ⁴³	PM ₁₀ : 50 μg/m³ PM _{2.5} : 15 μg/m³	5,000 ppm (500 in Quito and Cuenca) ⁴⁴	2,415 (2010)	1.4 MM (2011)	LDV: Euro I / U.S. 1987 HDV: Euro II / U.S. 1994

Source: Cleaning Up Latin America's Air: Reducing Black Carbon Emissions Can Benefit the Climate and Public Health Quickly

Emission Standards in Latin America Cities

COUNTRY	National Annual PM ₁₀ and PM _{2.5} Standards ^{27*}	Maximum Sulfur Level in Diesel Fuel	Road Sector Diesel Use (kilotons of oil equivalent by year)	Number of Registered Vehicles ²⁸	Emissions Standards for New Vehicles ^{29*}
EL SALVADOR ⁴⁵	PM ₁₀ : 50 μg/m³ PM _{2.5} : 15 μg/m³	5,000 ppm	Levels unknown	0.7 MM (2012)	LDV: Euro I / U.S. 1987
GUATEMALA ⁴⁶	PM ₁₀ : None PM _{2.5} : None	5,000 ppm	Levels unknown	2.1 MM (2010)	None
HONDURAS ⁴⁷	PM ₁₀ : None PM _{2.5} : None	5,000 ppm	Levels unknown	1.2MM (2012)	None
MEXICO	PM ₁₀ : 50 μg/m³ PM _{2.5} : 15 μg/m³	15 ppm, but most diesel is 300 ppm ⁴⁸	13,767 (2009) ⁴⁹	30.2 MM (2011)	All: Euro IV / U.S. 2004
NICARAGUA ⁵⁰	PM ₁₀ : 50 μg/m³ PM _{2.5} : None	5,000 ppm	Levels unknown	0.6 MM (2012)	None
PARAGUAY ⁵¹	PM ₁₀ : None PM _{2.5} : None	2,500 ppm	1,039 (2010)	1.15 MM (2013)	None enforced
PERU ⁵⁴	PM ₁₀ : 50 μg/m³ PM _{2.5} : 25 μg/m³	5,000 ppm (15 in Lima and Callao)	3,426 (2010)	2.6 MM (2011)	LDV and HDV: Euro III Buses: Euro IV (Lima)
URUGUAY ⁵²	PM ₁₀ : None PM _{2.5} : None	50 ppm ⁵³	582 (2010)	1.6MM (2011)	All: Euro III
VENEZUELA	PM ₁₀ : 50 μg/m³ PM _{2.5} : None	2,000 ppm⁵⁴	2,909 (2010)55	4.4 MM (2011)	HDV: Euro I / U.S. 1991 ⁵⁶

Source: Cleaning Up Latin America's Air: Reducing Black Carbon Emissions Can Benefit the Climate and Public Health Quickly

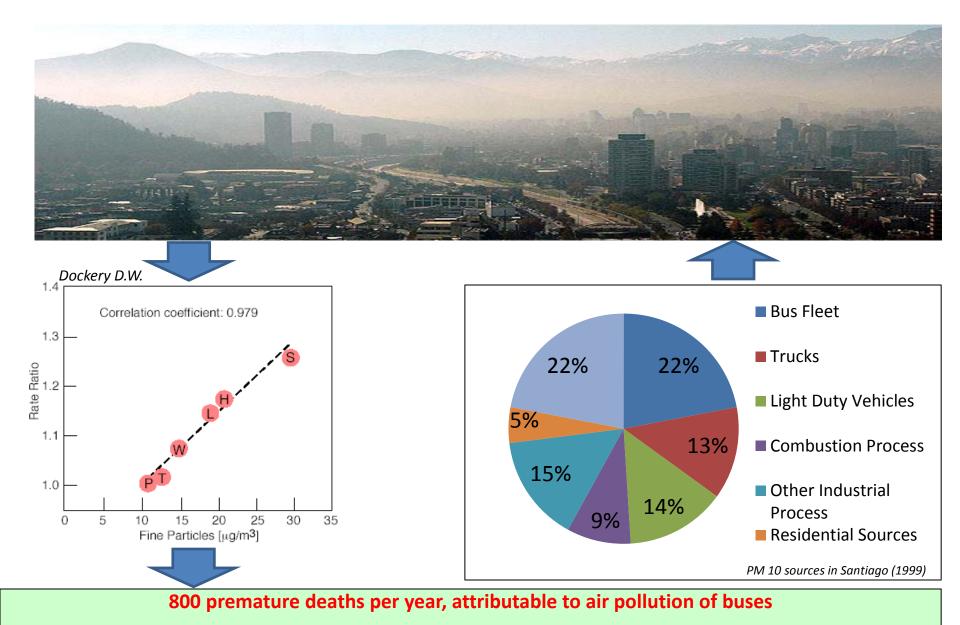
Pollution Ranking of Latin America Cities?

From Latin America, eight countries made the list of top 50 countries with the <u>worst air pollution</u>

- **1. Peru** ranked 18th with a PM2.5 level of 38 ug/m3.
- 2. Guatemala tied in 21st place with a PM2.5 level of 33 ug/m3,
- **3. Honduras** ranked as the 23rd worst for air pollution with a PM2.5 level of 32 ug/m3
- **4.** Chile tied in 27th place with a PM2.5 level of 28 ug/m3
- **5. Mexico** tied with a PM2.5 level of 27 ug/m3
- 6. Bolivia with a PM2.5 level of 27 ug/m3
- **7. Venezuela** tied with a PM2.5 level of 26 ug/m3
- 8. Colombia tied in 38th place with a PM2.5 level of 24 ug/m3

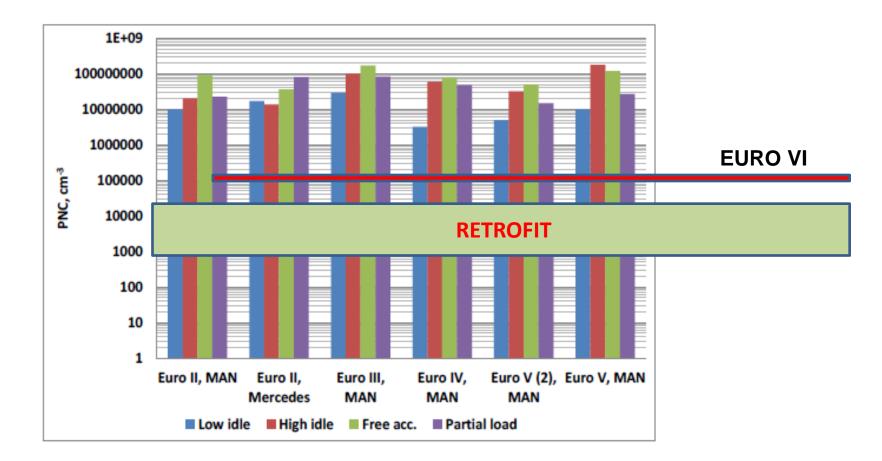
Source: World Health Organization

Air Quality still very bad \rightarrow actions urgently required


- Most of the Latin America Cities have implemented BRT's as a solution for mobility.
- These BRT's are using diesel fuel as a primary energy source.
- Diesel Fuel Quality has improved to achieve international standards issued by engine manufacturers.
- PM2.5, Black Carbon, and Particle Number have not decreased in many cities and it is important to push engine manufacturers, local authorities to implement clean technologies in the BRT's of Latin America.

Air Quality Improvement by DPF Filtration of Exhaust Gas of in-use public transport bus fleets

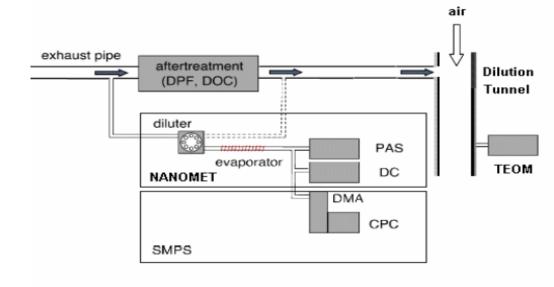
3500 Buses equipped with Diesel Particle Filters in Santiago de Chile 6000 Buses = 100 % in 2018


A.Mayer – Switzerland A.Reinoso - Chile

Emissions, Air Pollution and Health Effects in Santiago

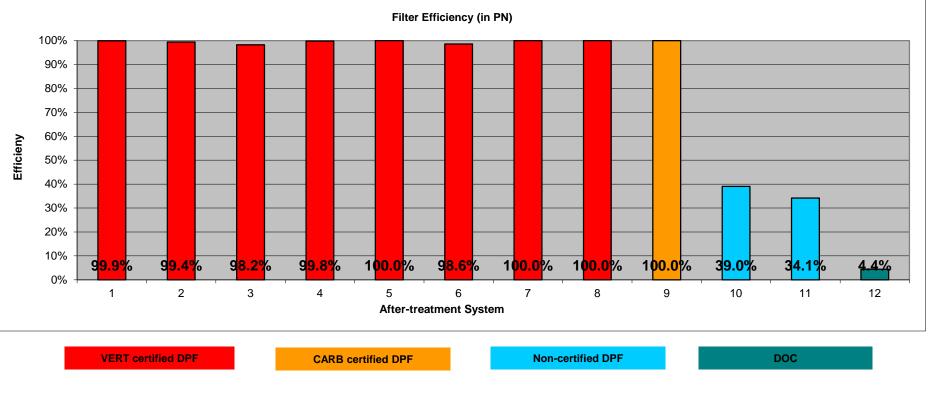
According to WHO model application

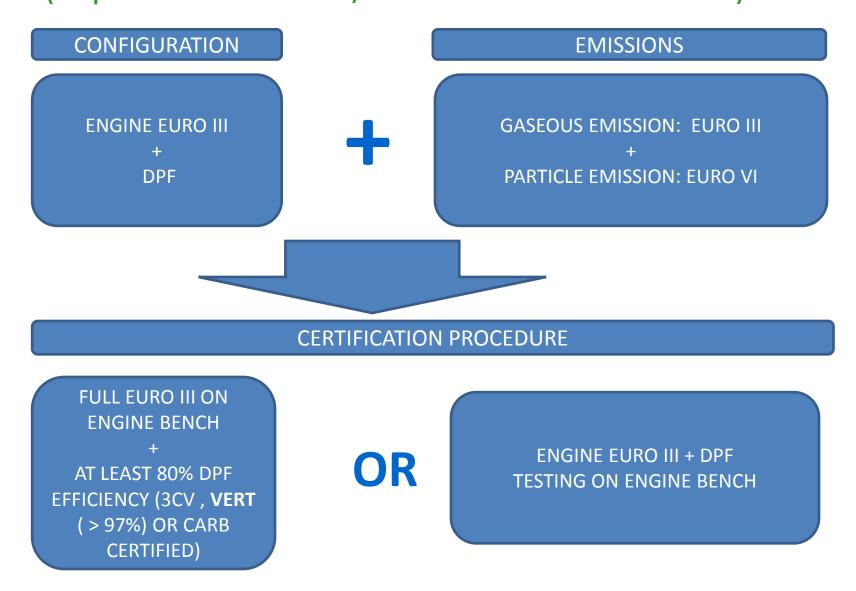
Does current OEM Technology provide Solutions for the Reduction of <u>Ultrafine Particle Emission</u>?



EURO V reduces mass PM but not number PN of UFP compared to II / III / IV Euro VI will bring the solution with the mandatory introduction of particle filters Retrofit can already today reach even better results on in-use engines Euro II to Euro V

Retrofit needs Technical Management



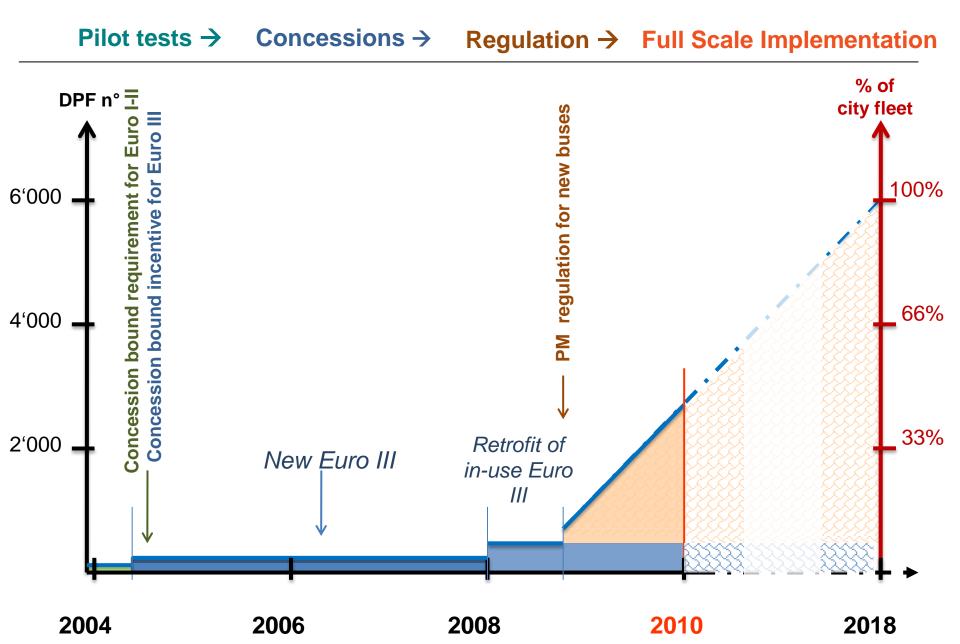

Results of the Santiago Pilot Test

Sources 3CV-Chile.

One year testing of 12 typical bus systems with 8 different Particle Filters in 3CV-laboratories and in actual city driving permitted the selection of best available technology and the start of the Santiago filter policy process

EURO III plus DPF – the Policy for new buses (Supreme Decree 49/2009 in force since 2010)

In-use Compliance Testing Results up to 352'000 km in daily service

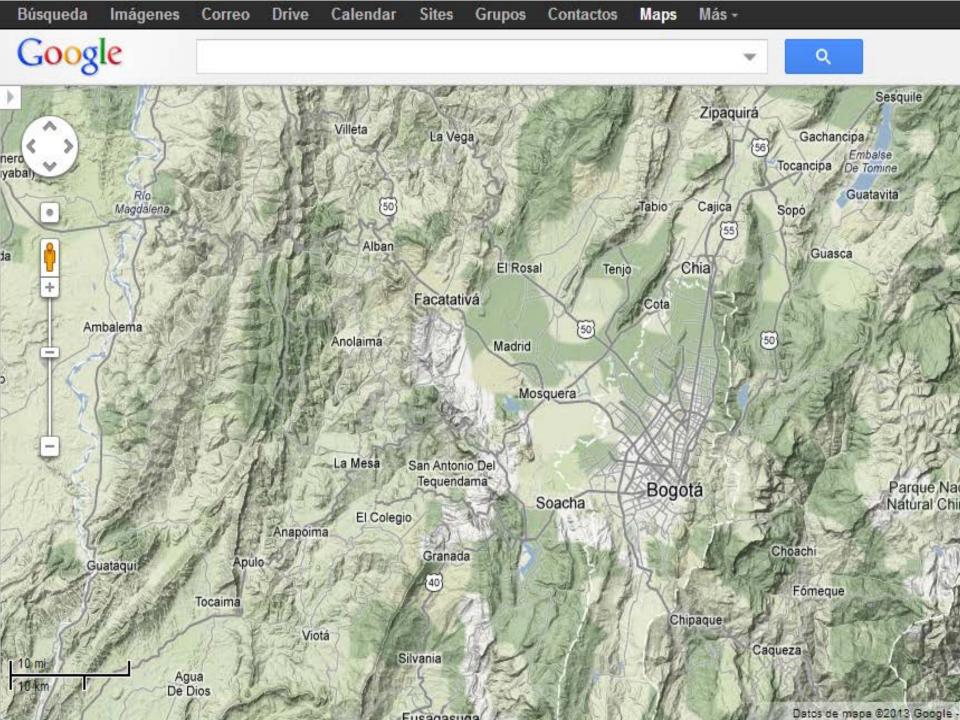

		Μ	ILAGE [KM]	EFFICENCY [%]					
DPF Origin	Number of Buses	Average	Max	Min	Average	Max	Min			
OEM EQUIPPED	16	63,690	352,950	13,133	93%	98%	79%			
RETROFITTED (*)	8	75,000	75,000	75,000	95%	98%	92%			
Total	24	67,460	352,950	13,133	93%	98%	79%			

(*) Estimated for one years operation Source 3CV-Chile data

Systematic Stepwise Approach

Pilot DPF retrofit project for public buses in Bogotá, Colombia March 2013

Nestor Y. Rojas, Helmer R. Acevedo Department of Chemical and Environmental Engineering Universidad Nacional de Colombia, Bogota, Colombia.



Overview

- >7.5 million inhabitants
- Altitude: 2,600 m
- Annual avg. T: 16ºC.
 - Max T: 24ºC
 - Min T: 0ºC

Air pollution

- Annual avg. PM10: 60 μg/m3
- In western areas: 90 μg/m3
- Frequent short thermal inversions

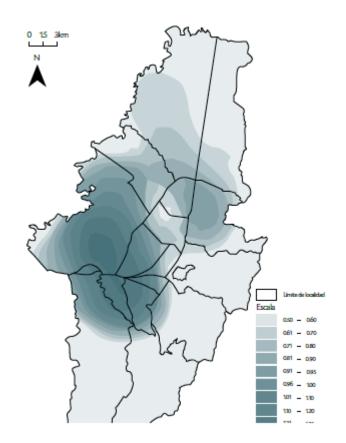


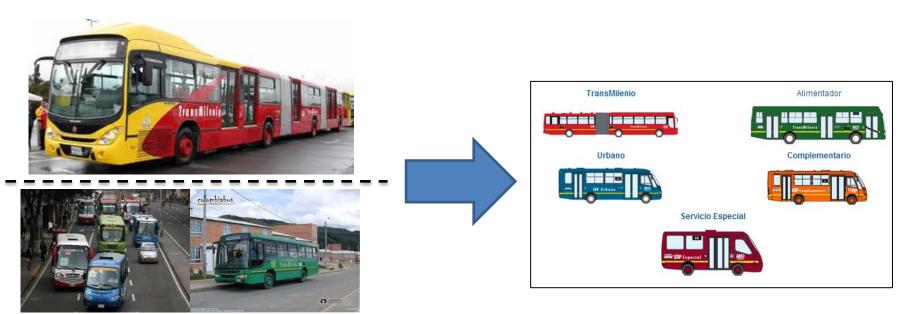
Foto tomada el 20 de abril de 2006 a las 8:30 a.m. (smog fotoquímico)

Foto: Juan Felipe Franco

Foto tomada el 3 de mayo de 2006 (segundo día para de transporte). 8:30 a.m.

Foto: Juan Felipe Franco

Transportation


- No metro system (!)
- BRT system progressive expansion since 2000
 - Today: 1300 articulated, 10 bi-articulated, 500 feeders
 - 1.5 million trips/day
- «Traditional» system based on small buses
 - 15,000 buses
- Fuel
 - 50 ppm S
 - High aromatic content
 - 5-10% Palm oil biodiesel

Current change in the system

Segregated system
 Integrated system (SITP)

- Single card system for the whole city
- Reduction in the total number of buses
 - Scrap old buses
 - Reorganize routes and driving habits

SITP

- «Troncal» service
 - 1300 articulated and biarticulated buses
 - 500 feeders
 - Mostly Euro II, Euro III engines (5-10 years of use)
 - Some Euro IV and Euro V engines (1 year of use)

- «Zonal» service
 - 11,100 vehicles with
 different capacities (80,
 50, 40 and 19
 passengers)
 - Mostly pre-Euro, Euro I and Euro II engines
 - Mostly 1-5 years of use

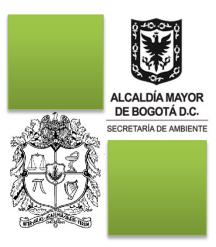
DPF retrofit project

- DPFs urgently needed
- Political will exists now
- Pilot program proposed: 14 buses, 4 categories
- 8 months

- Support needed:
 - Experience from
 Switzerland and Chile
 - Expertise, technology transfer, particle number instruments
 - DPFs manufacturer's involvement

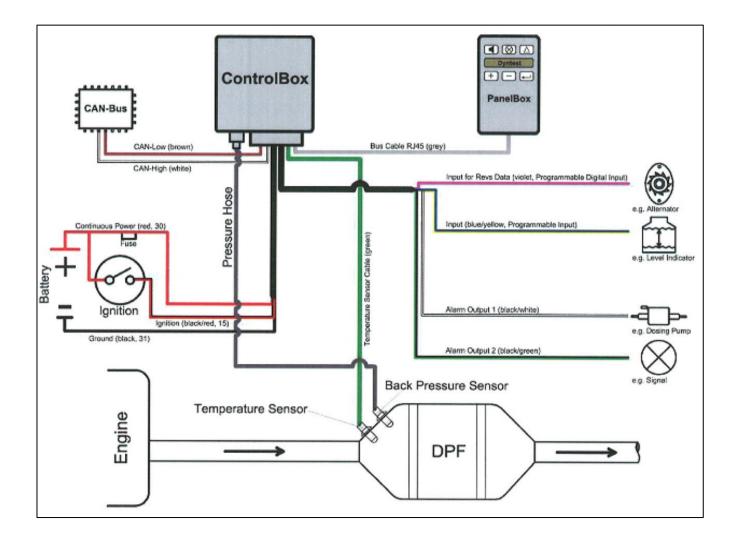
Buses for the pilot project

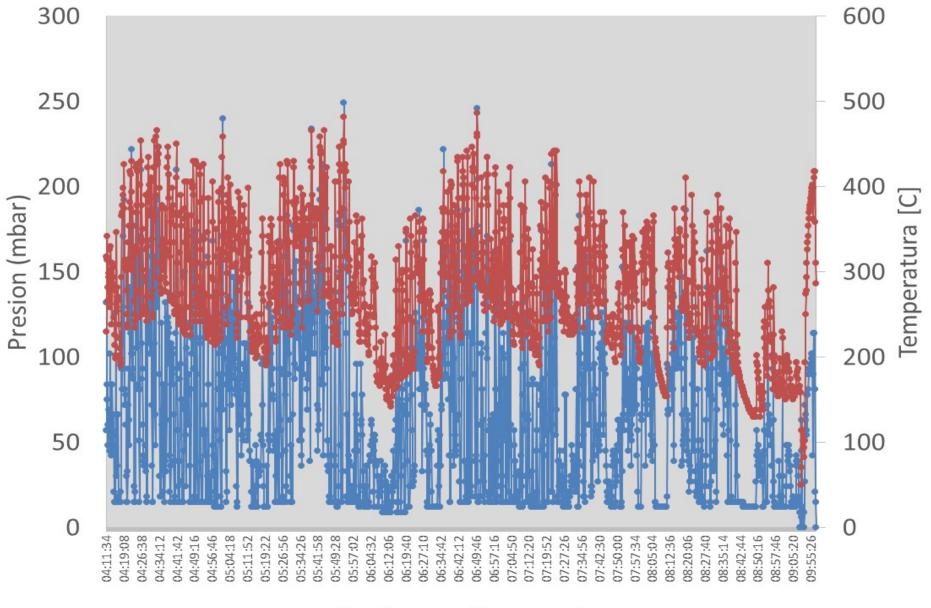
- TM articulated (4) buses
 Other buses (8) and feeders(2)
 - Mercedes
 - Volvo
 - Scania
- Mostly Euro I, II, some Euro IV, V


- - Mainly Chevrolet
 - Other brands (VW, Agrale, Chinese brands)
- Mostly Euro I, Euro II

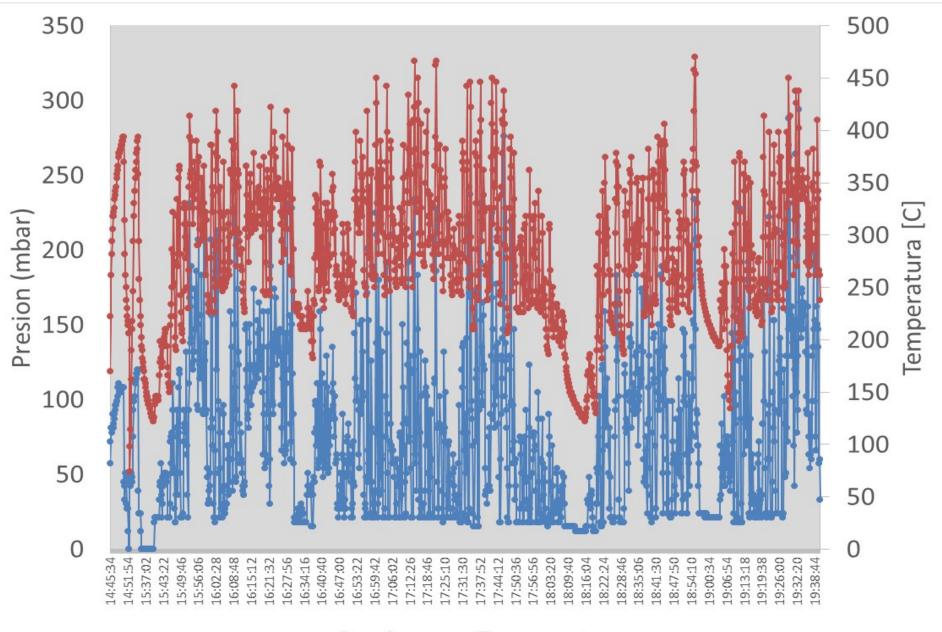
Pilot Project 2014

Secretaria Distrital de Ambiente & Universidad Nacional de Colombia


2013 - 2014


SCE para para vehículos del SITP de Bogotá

SISTEMAS DE RECOLECCION DE DATOS DE PRESION Y TEMPERATURA Y RESULTADOS VEHICULOS CON DPF's Helmer Acevedo Ph.D. Bogotá D.C., Diciembre de 2014


ELEMENTOS DE UN SISTEMA DATALOGGER

DATOS REGISTRADOS DURANTE OPERACION (21-11-2014)

DATOS REGISTRADOS DURANTE OPERACION (21-11-2014)

Climate and Clean Air in Latin American Cities (CALAC)

Bogotá DPF Project

	PRE DA	ATALOGG	ING ME	ASUREMEN		IOU	T DPF		PILC	T FLEE	T BUS N° 3	
				Ger	neral Da	ata						
Vehicle	e Code:	K120		Vehicle Plate:	VE	E 019		Datal	ogger <u>Se</u>	rie N°:	1438	
				Engine	Specific	catio	ns					
Brand:	Merce	edes Benz		Model: 0	Size [c.c.]			.c.]:	11967	7		
			Man	ufacturer Data S	Sheet:	Mea	surement	: Cor	nments			
Max. P	ower [kW](@[rpm]:	265@	2000		231(<u>@</u> 1690					
	orque [Nm]		1600	@1100		1334	@1690					
	peed [rpm]:		2250			2250)					
Idle [rp	om]:		560			560						
Measurement Conditions												
Ambie	nt T° [°C]:	20,5		Atm. Pressure [mbar]:			760	Rel.	. Humed	ity[%]:	42,1	
Load	Pow.	Speed	Exhaust	Exh. Press.	Load		Pow. Speed			haust	Exh. Press.	
[%]	[kW]	[rpm]	T° [°C]	[mbar]	[%]	_	[kW]	[rpm]		[°C]	[mbar]	
0%	0	1300+-30	*	2.413	50%	-	93		*		*	
25%	47	1400+-	192.4	4.964	75%		140		*		*	
		100										
				Idle M	easure							
Stands	till Noise M	ax. rpm ⁽¹⁾ [d̪	BA]:	63.6	Free	Acce	leration O	p. [m ⁻¹]:	: 0. 3	2		
				Dynamomet	ter Mea	asure	ements					
Load	Actual Loa	d Opa	acity	NP	CO		TH	С	NC)x	NO2	
	[kW]	[n	n ⁻¹]	[#/cm3]	[ppn	n]	[ppr	n]	[pp	m]	[ppm]	
0%		30	0,12	**		130		310		653	34,6	
25%		47	0,14	**		128	8 312		312 620,4		16,4	
50%		93	0,30	**		178	292		92 928		2,8	
75%	14	40	***	**								

Note (1): Sonometer position to 0,5 [m] distance of exhaust pipe exit through 45° regarding longitudinal axle.

Climate and Clean Air in Latin American Cities (CALAC)

Bogotá DPF Project

	PRE DATALOGGING MEASUREMENTS WITHOUT DPF PILOT FLEET BUS N° 5												
	General Data												
Vehicle	Code:	S157		Vehicle Plate: VEE 166				Data	logger S	erie N°:	1480		
				Engine	e Specif	icati	ons						
Brand:	SCANI	A K310 / <mark>K</mark>	94IA	Model: Do)		Size [c.c.]:	9.000)			
			Man	ufacturer Data S	Sheet:	Mea	asurement	: Co	mments	:			
Max. P	ower [kW]@	و[rpm]:	228	@ 1.900		148	@1.285						
Max. T	orque [Nm]	@[rpm]:	1.55	0@1.300		1.10	0@1.270						
	peed [rpm]:		2.20	0		2.20)0						
Idle[rpm]: 610 610													
Measurement Conditions													
Ambier	nt T° [°C]:	19		Atm. Pressure [mbar]:			760 Rel. Humic			lity [%]:	51,5		
Load	Pow.	Speed	Exhaust	Exh. Press.	Load		Pow.	Speed	I E	xhaust	Exh. Press.		
[%]	[kW]	[rpm]	T° [°C]	[mbar]	[%]		[kW]	[rpm]		° [°C]	[mbar]		
0%	0	1.350+	190,3	2,895	50%		74	1.306	+- 3	36	8,894		
		-50	-					100			-		
25%	37	*	*	*	75%		111	*	*		*		
				Idle N	/leasure	emei	nts						
Stands	till Noise M	ax. rpm ⁽¹⁾	[dBA]:	93,77	Free	e Acce	eleration O	p. [m ⁻¹]]: 0,	,21			
				Dynamome	eter Me	easu	rements						
Load	Actual Loa	d Op	acity	NP	CO)	TH	IC	N	Ох	NO2		
	[kW]] [m ⁻¹]	[#/cm3]	(ppn	n]	[pp	m]	[p	pm]	[ppm]		
0%		0	0,05	4,70E+06		97		*	* 8		12,4		
25%		37	*	*		*	*			*	*		
50%		74	0,41	4,51E+07		288		*		1265,7	4,7		
75%	11	11	*	*		*		*		*	*		

Climate and Clean Air in Latin American Cities (CALAC)

Bogotá DPF Project

		PRE DA	TALOGO	GING ME	ASUREMENTS	NITH D	PF			PILC	OT FLEE	T BUS N°
					Ge	neral Da	ata					
Vehicle Cod	le:	K120		Vehicl	e Plate:		VEE019		Datalo	gger Serie	N°:	
Emission St	andard	Euro 3		Bus op	erator compan	y:	Somos	К	Filter ı	manufactu	rer:	DINEX
Filter type:												
		•			Engine	Specific	ations					·
Brand:	Mer	cedes Ben	z	Mo	odel:		MB OH	2836	Size [c.c	.]:	11967	,
Year:	200	5		Mi	leage:		697207		Chassis:		9BH38	8215468478875
					Measure	ment Co	ondition	5				
				Manufa	cturer Data She	et:	Mea	surement:	Con	nments:		
Max. Power [kW]@[rpm]:				265@2000			142 (142 @ 1680 -				
-	ie [Nm]@[rj	om]:		1600Nm@1100			843 @ 1560 -					
Max. speed	l [rpm]:	-			2145		-					
Idle [rpm]:				-			540		-			
					Measure	ment Co	ondition	5				
Ambient T°	[°C]:	23.2		Atm. Pressure [mbar]:			:		Humidity	[%]:	39	
		_		Dyn	amometer Mea	sureme	ents Dow	nstream 1				_
Load [%]	Pow. [kW]	Speed [rpm]	1	talogger [°C]	Press. Datalogger [mbar]		oad %]	Pow. [kW]	Speed [rpm]		atalogge [°C]	er Press. Datalogger [mbar]
0%	0	1300	293		103	50	0%	88	1300	415		199
25%	44	1300	392		117	75	5%*	110 (131)	1400	528		250
Load	PM _{2.5}		IP al		co		нс	N		NO2	I	CO2
	(mg/cm³)	[#/	cm3]		[%] [pr		pm]	(pp	mJ	[ppm]	1	[%]
0%	1.03E	-3	2.54E4		0.02		8		91		-	5
25%	2.567E	-2	4.5E4		0.02		4		364		-	8
50%	5.81E	-2	2.2E4		0.01		0		732		-	10
75%	3.016E	-1	2.9E4		0.01		6		632		-	10

Climate and Clean Air in Latin American Cities (CALAC)

Bogotá DPF Project

-		PRE DAT	ALOGG	ING ME	ASUREMENTS	WITH DF	PF			PIL	DT FLEE	T BUS N°
					Gei	neral Da	ta					
Vehicle Co	de:	\$157		Vehicl	e Plate:		VEE166		Datalo	gger Serie	N°:	
Emission St	tandard	Euro 3		Bus op	erator compan	y:	Transm	asivo	Filter I	manufactu	rer:	Baumot
Filter type:												
					Engine	Specific	ations					·
Brand:	Scar	nia		Mo	odel:		K94		Size [c.o	.]:	8870	
Year:	200	7		Mi	leage:		707601		Chassis:		9BS46	X2A073588156
					Measure	ment Co	nditions	;				
				Manufa	cturer Data She	et:	Measurement: Con			mments:		
Max. Powe	er [kW]@[rp	m]:	1	210			128 (128@1270 1		148@1300 Pre DPF		
-	ue [Nm]@[r	pm]:		-			-		9@1100 P	re DPF		
Max. speed							2300					
Idle [rpm]:							500					
					Measure	ment Co	nditions	;				
Ambient T°	' [°C]:	21.7		Atm. Pressure [mbar]:			:		Rel. Humedity			42.3
				Dyn	amometer Mea	sureme	nts Dow	nstream 1				
Load [%]	Pow. [kW]	Speed [rpm]		alogger °C]	Press. Datalogger [mbar]		ad %]	Pow. [kW]	Speed [rpm]		atalogg [°C]	er Press. Datalogger [mbar]
0%	0	1300	228		18	50	0%	74	1160	412		33
25%	37	1360	404		39	75	5%	111	1210	440		57
Load	PM _{2.5} (mg/cm ³)		IP :m3]	1			HC pm]	1	Ox om]	NO2 [ppm	I	CO2 [%]
0%	5.988	5-3	8.7E5		0.01		5.8		-			5.
25%	2.158		8.3E4		0.01		5.5		-		-	5.
50%	1.078	-4	8.63E3		0.01		8.8		-		-	8.
75%	4.88	-4	3.1E3		0.01		8.7		-		-	8.

COMENTARIOS FINALES

- Es fundamental reducir los tiempos de ralentí de los vehículos para garantizar una regeneración adecuada
- ACEITES LUBRICANTES con bajo contenido de cenizas es una garantía para la vida útil del filtro
- Los filtros evaluados bajo condiciones de dinamómetro reducen en mas del 98% el número de partículas

District Secretariat of Environment Bogota's Diesel Particulate Filters Program BDPF


Isabel Molina, Secretria del ambiente, Bogotá D.C., March 2015 Pilot Test officially terminated

Program

Schedule

• Description

- Local approval
- Technical guidelines Application Scope Graduality Emission levels
- Implementation
- Monitoring and control
- Lessons learned
- Bogota as Latin-American example

Filters Local Approval

Next Steps

The local approval is granted to the local manufacturer/ representative of the technology that has successfully met the defined requirements by the SDA:

Approved systems will be publish on the **DPF systems approved list by the SDA** for use in Bogotá.

Application Scope

Technical Guidelines

The SITP operators in its *troncal* and *zonal* components, must install Diesel Particulate Filters to:

1. All TRONCAL Buses which in December 31st of 2014 have crossed one million fifty thousand (1.050.000) kilometers or less.

3. All ZONAL Buses that are model year 2009 or higher

Vehicles categorized as mini bus type are excepted for the fulfillment of the current program.

Graduality

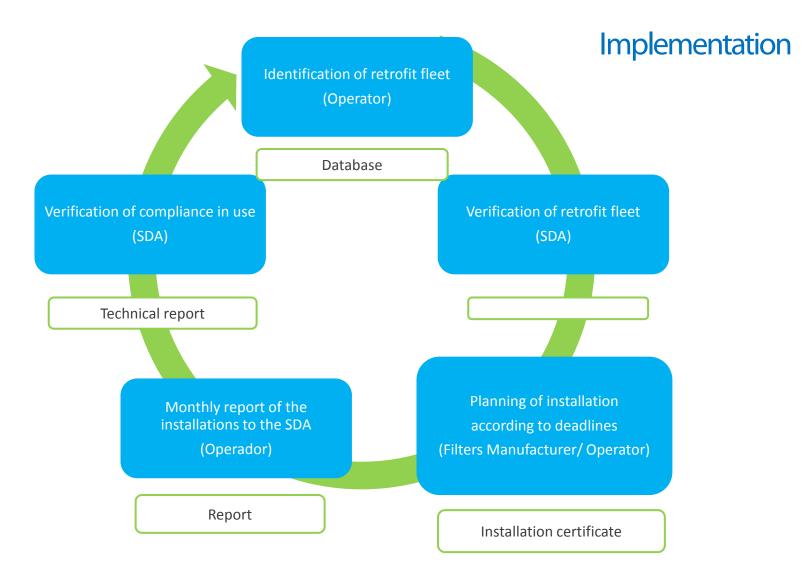
Technical Guidelines

Each operator must set the overhaul fleet size (retrofit) with DPF, according to the conditions laid down in the application scope and install the filters according to their retrofit overhaul fleet size:

Tamaño de la flota objeto		Plazos									
de retrofit. (Cantidad de vehículos)	Componente	30-sep-15	31-dic-15	31-mar-16	30-jun-16	30-sep-16	31-dic-16	31-mar-17			
<u><</u> 90	Troncal	100%									
Entre 91 y 180	Troncal	40%	80%	100%							
>180	Troncal	28%	56%	84%	100%						

Tamaño de la flota objeto		Plazos										
de retrofit. (Cantidad de vehículos)	Componente	30-sep-15	31-dic-15	31-mar-16	30-jun-16	30-sep-16	31-dic-16	31-mar-17				
<u><</u> 90	Zonal		15%	36%	100%							
Entre 91 y 180	Zonal		6%	16%	50%	85%	100%					
>180	Zonal		3%	8%	30%	53%	75%	100%				

Emission Levels


Technical Guidelines

There are two CONTROL PARAMETERS limits to which the operator must comply:

- 1. Efficiency in the removal of number of ultra-fine particles (NP)
- 2. Opacity

Next Steps

Monitoring Mechanisms

When Installing the Filter

Compliance in use

Manufacturer/supplier responsabilities

Instalation minutes, visual inspection, opacity before and after and filter effciency are checked.

Manufacturer loses approval

Monitoring & Control

When the filter is in operation

Ramdom Control

Operator responsabilities

Document review, visual inspection, opacity limit compliance

Operator with penalty for noncompliance