11

J. Czerwinski Laboratory for Internal Combustion Engines and Exhaust Emission Control Biel School of Engineering and Architecture Biel / Switzerland

Traping Efficiency of Several Diesel Particle Filters from the VERT-Building Machinery Field Test

Traping Efficiency of Several Diesel Particle Filters from the VERT – Building Machinery Field Test

by

Professor Jan Czerwinski

Head of the Laboratory for Internal Combustion Engines
And Exhaust Emission Control
Biel School of Engineering and Architecture, Switzerland

Workshop "Nanoparticle Measurement" ETH-Zurich, August 7, 1998

- ➤ Engine, test procedure and PM-measuring apparatus
- > VERT objectives and filed test
- Comparison of results with different particulate traps
 - limited emissions
 - particles size distribution and integrated particles numbers
 - coulometry
 - free acceleration
 - formation of sulphates at certain conditions
 - traping efficiency for: mass, number, elemental carbon
- > Summary

Engine Liebherr I:

Manufacturer:

Liebherr

Type:

941 T

Displaced volume: 6.11 liters

Rated RPM:

2000

Rated power:

105 kW

Combustion:

Direct injection

Super-charging:

Without intercooling

Test procedure

operating conditions:

Test point	RPM	Torque in %
1	2000 (100%)	100
2	1400 (50%)	100
5	2000	50
6	1400	50

measurements:

exhaust gases and PM gravimetric

4 points (VERT) stationary

• PM size distribution

- free acceleration opacity
- coulometry EC, OC

VERT - Project

Verbesserung der Emissionen von Realmaschinen in Tunnelbau

Improvement of emissions of the real machines in tunnel construction.

Objectives

- to diminish the emissions at the source
- to define the new limit values of emissions
- to find the methods and apparatus to control the machines in the field
- to confirm the feasibility of the particulate traps (PT) and regeneration systems in the field tests
- to give support to the users by introducing the PT-systems

VERT FIELD TESTS

A field test with 10 engines was run between October 1995 and June 1997.

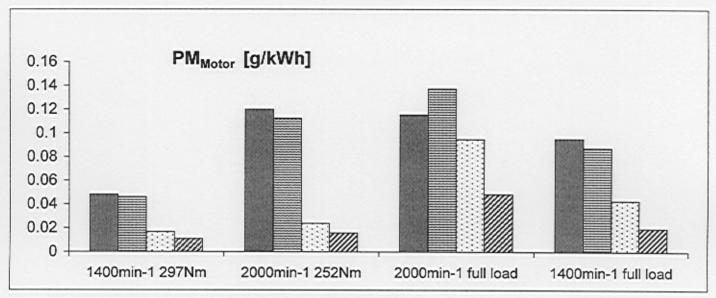
4 different filter media and 4 regeneration systems were tested.

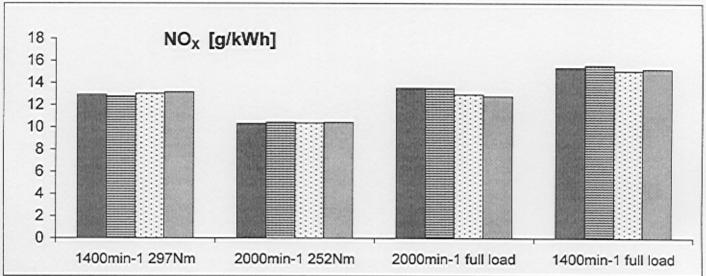
Over 23000 hours were accumulated.

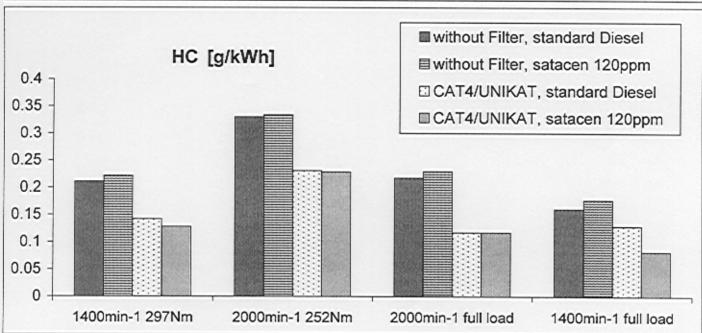
Filter systems selected for VERT filed test

	Manufacturer
5 ceramic monoliths	Corning, NGK
2 metal sinter filters	HJS (SHW)
2 knitted fiber filters	TSP BUCK
1 Braided fiber filter	HUG

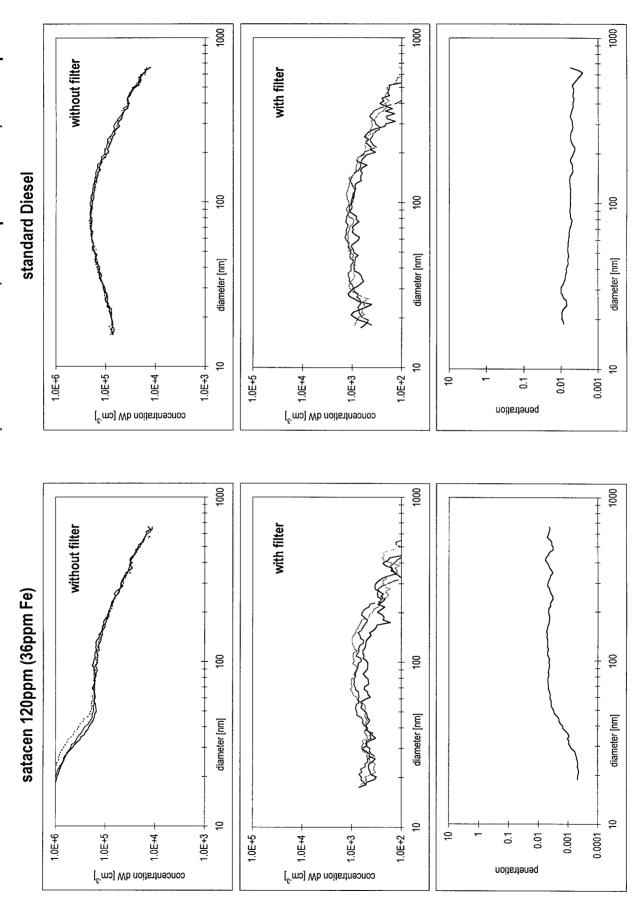
Regeneration systems

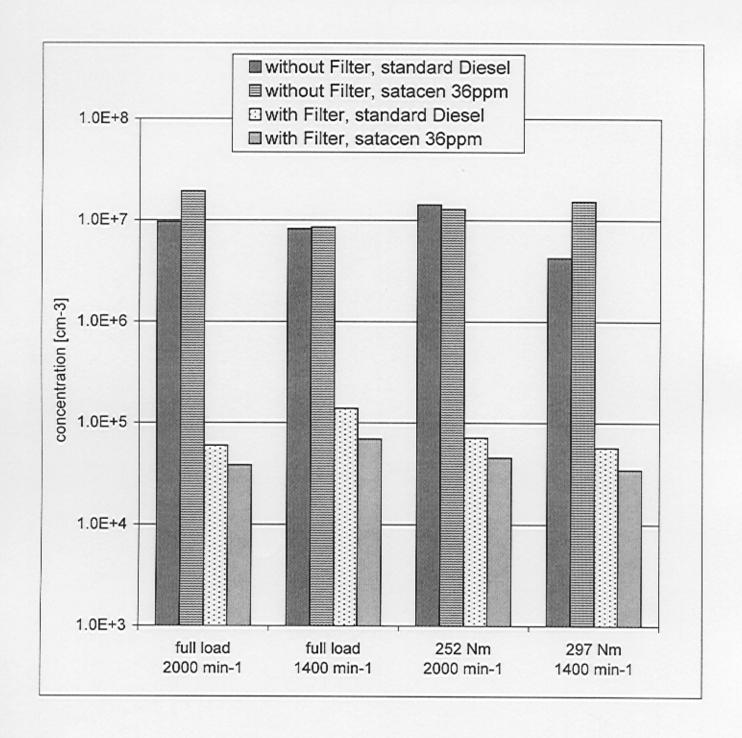

2 systems with periodic electrical regeneration
2 systems with full flow Diesel burner
4 systems with fuel additives
2 systems with catalytic coating


Particle Filters in the VERT field test

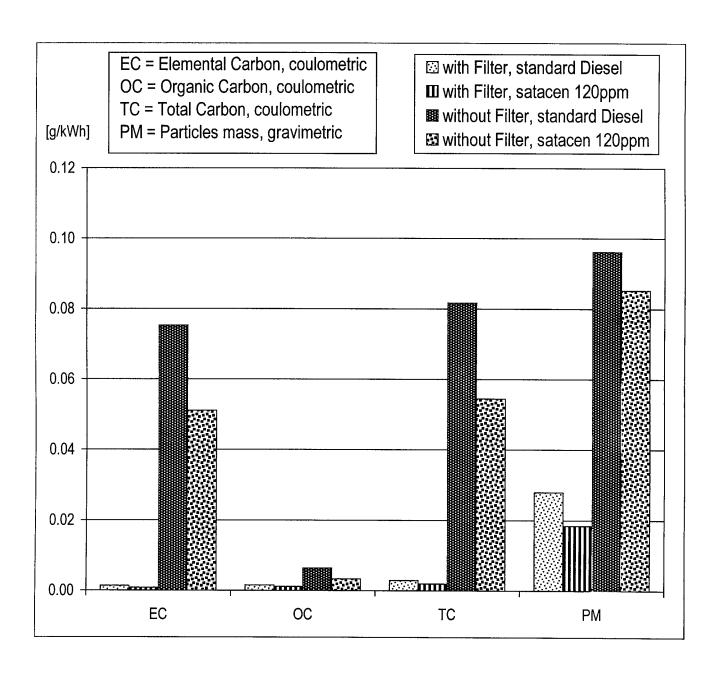

Engine Type		Manufacturer of Filter	Regeneration	Time of use [h]	Symbol
Liebherr			Eolys (Ce) satacen (Fe)	1846	LIB1/SHW
	2	BUCK	Catalytic coating	1270	LIB2/BUCK
	3	ECS	Lubrizol (Cu)	2061	LIB3/ECS
	4	DSI	full flow Diesel burner	1705	LIB4/DSI
Catapillar 1 SHW satacen (Fe)		satacen (Fe)	1534	CAT1/SHW	
	2	DSI	full flow Diesel burner	1724	CAT2/DSI
	3	BUCK	satacen (Fe)	2189	CAT3/BUCK
	4	UNIKAT	electrical off-line	6933	CAT4/UNIKAT
	5	UNIKAT	electrical off-line	2775	CAT5/UNIKAT
	6	HUG	catalytic coating	1707	CAT6/HUG

... not analysed after the field test

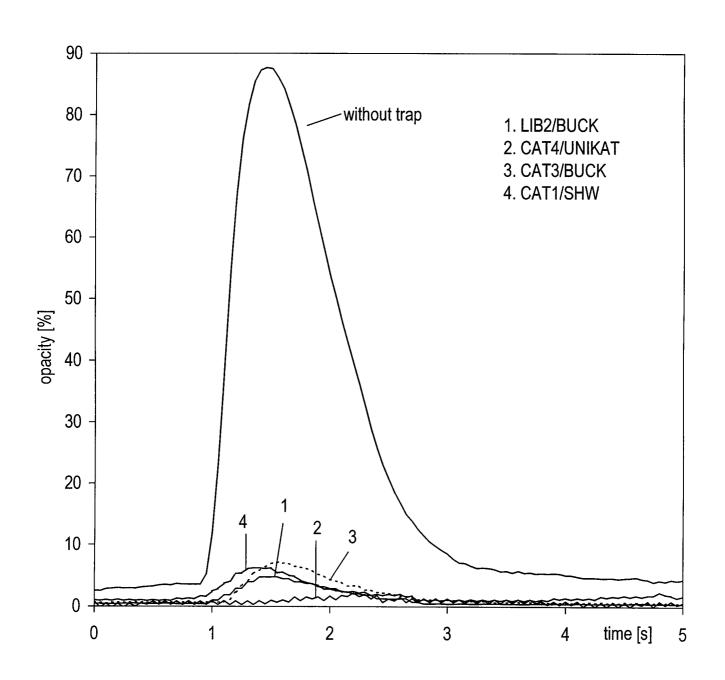

Limited emissions with CAT4/UNIKAT-Filter, Engine: Liebherr D914T



Size distributions with / without CAT4/UNIKAT-Filter, Liebherr D914 T, 2000 rpm/full load, HC-Trap

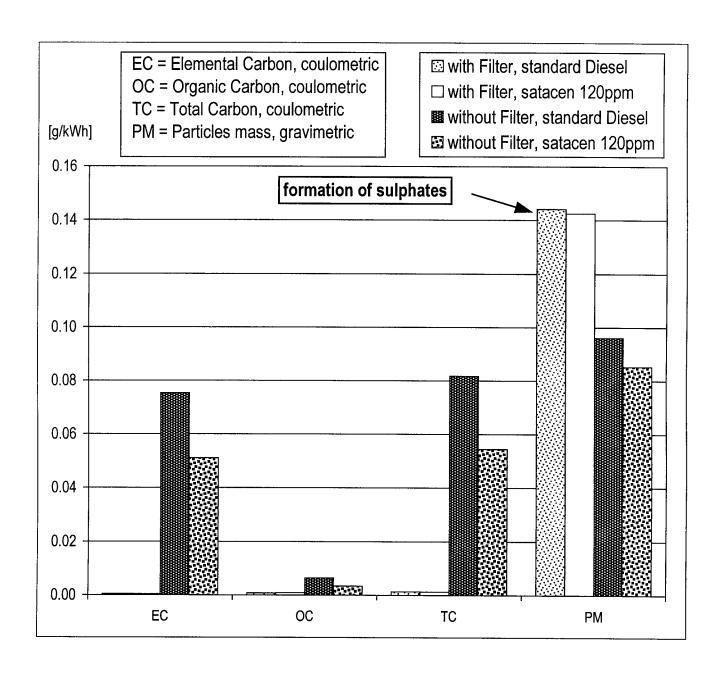

Integrated numbers of particles in the size spectrum 20-200 nm

CAT4/UNIKAT-Filter, with thermodenuder



Comparison Coulometry / Gravimetry with/without CAT4/UNIKAT-Filter

Liebherr D914T at 1400min-1 / full load



Opacity during the free acceleration with different traps from the VERT-field test

Comparison Coulometry / Gravimetry with/without LIB3/ECS-Filter

Liebherr D914T at 1400min-1 / full load

Comparison of traping efficiencies of mass (PMAG) and counts 20-200nm (PZAG)

stanc	lard	Diesel
-------	------	--------

satacen 120ppm

Filter	measure	mass	counts	mass	counts
	point	PMAG	PZAG	PMAG	PZAG
		[%]	[%]	[%]	[%]
LIB4/DSI	2	74.9	85.3	78.9	86.0
	6	48.5	84.3	77.5	98.6
	5	79.2	88.9	75.4	87.5
	1	73.4	88.1	72.5	94.4
	2	76.3			
LIB2/BUCK	1 0 1	07.0	00.7		
LIB2/BUCK	2	87.2	96.7	90.3	95.5
	6	57.3	96.2	57.5	99.6
	5	65.6	93.8	73.9	97.6
	1	84.4	94.8	92.0	98.5
	2	88.1		91.3	
LIB3/ECS	2	-52.7		-59.2	
	6	89.3		86.9	
	5	93.0		90.1	
	1	-80.1		-64.2	
	2		<u></u>	-04.2	:
			.i		
LIB1/SHW	2	21.6	97.1	-18.5	94.1
	6	86.1	96.7	85.6	99.3
	5	87.2	97.6	89.7	98.0
	1 1	-182.0	93.7	-67.8	97.1
	2	-17.8		27.2	
CATAL		20.0	00.0	774	60.0
CAT4/	2	39.8	98.3	77.1	99.2
UNIKAT	6	65.4	98.7	76.5	99.8
	5	80.2	99.5	86.0	99.6
	1	17.8	99.4	64.8	99.8
	2	70.6		78.3	
CAT3/BUCK	2	60.9	90.2	84.3	94.2
	6	47.6	95.1	57.7	99.2
	5	62.6	95.3	68.0	97.0
	1	69.6	83.5	83.1	96.7
	2	80.3	00.0	90.6	00.7
		22,0			·
CAT1/SHW	2	72.6	97.3	85.9	97.5
	6	69.9	97.7	87.4	99.7
	5	79.4	98.4	90.3	98.7
	1	80.1	97.7	86.7	99.3
	2	85.7		87.9	

Arithmetic averages of trapping efficiencies: mass (PMAG) - counts (PZAG) for the traps without problems

	PN	IAG	PZAG	
	standard Diesel	satacen 120 ppm	standard Diesel	satacen 120 ppm
LIB4 / DSI	70.46	76.08	86.65	91.63
LIB2 / BUCK	76.52	81.00	95.38	97.80
CAT4 / UNIKAT	54.76	76.54	98.98	99.60
CAT3 / BUCK	64.20	76.74	91.03	96.78
CAT1 / SHW	77.54	87.64	97.79	98.80
mean values	68.7	79.6	94.0	96.9
total mean values	74.15		95.	44

Correlation between trapping efficiencies of: mass (PMAG) and elemental carbon (ECAG) at 1400 rpm/full load

LIB	4/DSI	LIB2/	BUCK	LIB3/ECS		LIB1/SHW	
PMAG	ECAG	PMAG	ECAG	PMAG	ECAG	PMAG	ECAG
[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]
standard	Diesel						
74.9	84.2	88.1	93.9	-52.7	99.3	-17.8	
satacen 120ppm (36ppm Fe)							
72.5		91.3	95.5	-59.2	99.2	27.2	93.1

CAT4/UNIKAT		CAT3/BUCK		CAT	1/SHW			
PMAG	ECAG	PMAG	ECAG	PMAG	ECAG			
[%]	[%]	[%]	[%]	[%]	[%]			
standard	standard Diesel							
70.6	98.2	80.3	86.9	85.7	97.2			
satacen 120ppm (36ppm Fe)								
78.3	98.4	90.6	95.3	87.9	96.6			

Summary

- the average traping efficiencies are:
 (without traps with clear appearance of sulphates formation)
 - mass 74%
 - counts (20 200 nm) 95%
 - elemental carbon 94% (only 1400 rpm / full load)
- there is a catalytic influence of additive residue in the filter on the volatile components - oxidation of CO & HC
- the additive increases the number of smallest particles which are efficiently traped by the filter
- there is a very good filtering at transient conditions (free acceleration)
- at certain conditions with catalytic residue in the trap and with higher temperatures – there is an intensive formation of sulphates. The PM gravimetric emission may increase strongly at full load points, similarly as with ox-cat.
- after in average 2375 hours of service the particulate traps were found to be in excellent condition