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Introduction

Recently, there has been an increased attention within the scientific community to the presence
of carbonaceous fine and ultrafine particles in the atmosphere, because of their impact on the
environment and their adverse effects on human health. Particularly, recent studies have
established a worrying correlation between the concentration of ultrafine organic particles in the
atmosphere and the respiratory illness [1]. Donaldson ef al [2] have shown that material which is
relatively inert when inhaled as micrometer-sized particles can be highly inflammogenic for
particles in nanometer size range, because they deposit in deep lung. Also, it has been suggested
that, since particles in the accumulation mode (0.1pum<d<lum) can act as a sink for the nuclei
mode (d<0.1pm), the decrease of the number of fine particles could result in a many-fold
increase of the number of ultrafine ones [3,4].

Yet, some recent studies on combustion systems [5,6] have shown that only a minor fraction of
the organic matter sampled in the combustion by-products is chemically speciated, the remaining
being unidentified. Finally, specific investigations on rich flames [7,8] have inferred the
existence of nanoparticles (d=2nm) in the reaction zone much smaller than soot nuclei (d=20-40
nm) and in conditions below the threshold of soot formation.

In this framework, more detailed investigations on i.c. engines exhausts are of interest since they
can lead to assess the role of diesel and spark-ignition engines as sources of ultrafine organic

particles. In fact, the unidentified carbon fraction might be emitted mostly in the form of




extremely fine particles, undetectable by existing instruments, which escape any control and
abatement process and are released continuously to the atmosphere.

Preliminarly, it is worth addressing a nomenclature problem. Figure 1 shows an overall scheme
of the most used classification of particle sizes [9]. Atmospheric particles are ordinarily
classified into three- distributions of sizes or "modes" [10], namely "coarse" (d > 1.0 pm),
"accumulation” (0.1 pm > d >1.0 um), and "nucleation” (d < 0.1 {m) mode. On the other hand,
the terms "fine" and "ultrafine” are also commonly used for particles with sizes smaller than 1.0
pm and 0.1 um, respectively. In addition, the term "nanometric” is increasingly used for ultrafine
particles. Neverthless, ambiguity still remains about the distinction between particles with sizes
in the range 0.01 um > d > 0.1 um, e.g. soot nuclei, and still smaller particles, e.g. molecular
clusters, with sizes below 0.01 pm. Accordingly, it seems appropriate to refer to such particles as
"hyperfine" particles, which add to and complete the classification presently covered by the
"fine" and "ultrafine" terms.

This paper focuses on the experimental problem of searching and detecting carbonaceous
hyperfine particles, emitted in the exhausts of both compression-ignited and spark-ignited i.c.
engines. New experimental methods will be described, which are capable of detecting
nanometric particles and, on the other side, of providing further insights on the characterization
of i.c. engines emissions. They are based on the well-assessed optical extinction and scattering
techniques, but operated with spectrally resolved, broadband ultraviolet light.

Experimental data consist in a) extinction spectra on air-diluted exhausts and b) extinction and
scattering spectra on water-trapped combustion species. Evaluation from experimental spectra of

size, volume fractions and optical properties of detected nanoparticles is reported.

Experimental apparatus

In this work, we report on optical investigations on the exhausts of two in-use cars, roughly
representative of the circulating sheep, with A) a compression-ignited (diesel) engine and B) a
spark-ignited engine, equipped with and a three-way catalyst, fueled with unleaded gasoline,
respectively. They have been operated at the chassis dynamometer on a fixed working point
(3000rpm, 3rd gear, 50% load). The duration of each test run was 13 min and the fuel
consumption monitored. For brevity, in the following they will be referred to as ‘diesel’ and

‘gasoline’ cases, respectively.




In a first set of tests, the exhaust emissions are firstly diluted with air in a dilution tunnel at an
average dilution ratio Rg=1:10, as in standard test procedures, and then brought to a 1.0 m long
optical path, where ‘in situ’ optical extinction measurements are carried out. In the following, the
corresponding samples will be termed AD (‘air-diluted’) exhausts.

In other tests, the exhaust emissions, without any dilution, have been cooled in a heat exchanger;
so that combustion water was forced to condense and thus to trap non-volatile combustion by-
products for ‘ex situ’ optical analysis. Accordingly, such samples are referred to as WT (‘water-

trapped’), indicating trapped species or condensed (combustion) water, as appropriate.

Optical techniques

Broad-band light extinction and scattering techniques, spectrally resolved in the ultraviolet band
(190nm-400nm), have been used in the experiments reported here, the former on both ‘air-
cooled’ and ‘water-trapped’ samples, the latter only for detection of ‘water-trapped’ particles.
The well-assessed spectral extinction technique involves the measurement of the attenuation (or
extinction) of light through a homogeneous medium of length [ , cm, according to the Lambert-

Beer’s law:
I{A)=1,(A) exp[-0tpyy(A) 1], (1)

where I,(A) and I; (A) are the incident and the transmitted light intensities at the wavelength

A, cm, respectively and @pyfA) = Ny Cext( M), cm-1, is the extinction coefficient. For absorbing
scatterers much smaller than the wavelength, the latter can be expressed [11] as :

Oext(A) = Ny (rdy2/4)- 4 T dpy /2) -Im{ (mp2-1)/ mp2+2)) (2)
where Np ., cm3, is the number concentration of molecules/particles,

Oext(A) , cm2, is the extinction cross-section of the interacting molecule/particle,

mp( A) = np( A) + i-kp( A) is the complex refractive index of the molecule/particle.

The ‘light scattering’ technique is well known as well, and widely applied in many fields,
particularly for optical diagnostics of combustion processes and species. For unpolarized light

and for particles much smaller than the wavelength A, the light-matter interaction is termed

Rayleigh scattering' and is described by the scattering efficiency Q.4 (A) = Np:Oscq (A), given
by:




Osca (A) = (8/3)+ Ny (mdp?/4) - ( mdy/2)* -Re2{(my2-1)/ mp2+2)} (3)
In the experiments reported here, a new kind of light source [12] has been used. It exploits the
laser-induced optical breakdown of air, obtained by tightly focusing a pulsed beam of coherent
light. The resulting plasma kernel is : A) extremely hot, reaching electron temperatures as high
as 105K; B) short-lived, with a lifetime of few tens of nanoseconds; C) spatially confined in a
volume of 102 mm?®. Its spectral emission spans from visible down to the deep ultraviolet band,
thus providing enough radiation for applications involving weak light-matter interactions or
detection of trace species.
Figures 2A-2C show the experimental setups for the extinction and scattering measurements. A
Nd-YAG, Q-switched laser beam (A = 1.06 um, 200 mJ/pulse, 7 ns pulse duration, 10 pulses/s)
fires the plasma, which constitutes the light source, in the focus F of the ellipsoidal mirror M1
(for AD- and WT- extinction and scattering). In the extinction measurements, a small fraction of
light travels through either the AD exhausts which flow in the optical path (Fig. 2A) or the WT
samples in a fluorimetric quartz cell (Fig. 2B) and is then dispersed and recorded. In light
scattering experiments, the quartz cell is placed in the near focus of the ellipsoidal mirror M2
(Fig. 2C). The ellipsoidal mirror M2 (Fig. 2C) condenses the emitted light in its far focus. The
light scattered by the sample is collected by the mirror M2 and brought to its far focus on the

input slit of the detector assembly.
Results

Extinction measurements
Spectral extinction measurements carried out on air-diluted (AD) exhausts have been reported in

Fig. 3.A and show the extinction coefficient Oext(A), units of cm'l, as a function of the

wavelength A of the incident radiation in the ultraviolet range 190nm-400nm, for ‘diesel’ and
‘gasoline’ exhausts, as indicated. The absorption lines grouped in the wavelength range 200 nm -

230 nm are distinctive of NO. Around 400nm, the wide N O3 absorption band appears too. In AD

diesel' extinction spectrum, the "soot" feature shows up, with the typical broadband, A!spectral

behavior.



The extinction coefficient of WT samples was nearly 10* times higher than AD exhausts'. So it
has been necessary to dilute the collected samples progressively, until different best dilutions
have been reached for extinction and scattering measurements, respectively.

Figure 3.B shows the extinction spectra Oex¢(A) of WT ‘diesel’ and ‘gasoline’ samples, rescaled

and referred to undiluted samples. The WT extinction spectra appear quite different from the
corresponding AD's in Fig. 3.A, involving a selective trapping of some species. In particular,

most soot particles turn out to have escaped water trapping.

Scattering measurements

The extinction technique, in principle, cannot discriminate whether the absorbing species are
molecules, e.g. polyaromatics, or a suspension of fine carbonaceous particles, since their
absorption spectra might be similar. The light scattering technique can remove the ambiguity,
since particles provide detectable scattering signals, whereas the expected concentrations of
molecules, if any, scatter light at vanishing levels.

Experimental scattering raw data are affected by multiplicative factors: i) the spectral emission
intensity of the incident light and ii) the overall spectral response of the optics-spectrometer-
detector assembly; as well as by additive contributions, namely iii) stray light from the quartz
cell, iv) fluorescence, if any, and v) the spectral scattering of the WT sample (water + trapped
species). Retrieval of the ‘pure’ scattering data from raw scattered signals requires careful
cleaning procedures. Firstly, fluorescence has been extracted from the signals, by means of a
couple of further scattering measurements, carried out with and without a low-pass filter (cutoff

wavelength A.=280nm). Next, signals have been corrected for multiplicative spectral factors, by

making the ratio with the acquired spectrum of the incident light, and for stray light from cell
walls. Detailed procedures and techniques are described elsewhere [13]. Finally, the resulting
intensities have been calibrated to the absolute value of the scattering efficiency of pure water

Qw =5.2x10" cm™ sr'! at A=366 nm [14].

Figure 4 reports on the absolute scattering efficiencies Q(A), in units of cm’™ sr'l, as functions of
wavelength over the band 200 nm - 400 nm, of WT ‘diesel’ and * gasoline’ samples. Also shown,
for reference, is the theoretical scattering of water (dashed line at the bottom). The ‘excess’

scattering from WT matter over pure water is attributed to particles. In Fig. 4 the minimum of




scattering level around 250 nm can be interpreted as due to the matching of the real refractive
index of the particles to that of pure water.
From the experimental data of Figg.3.B and 4 and from the relationships (2) and (3), it is

possible to retrieve the average size dp, the number concentrations Np, and the optical properties

mpO») = np(?\,) + i-kp(},) of the scatterers on the whole UV spectrum, as detailed in [13].

The computed values of sizes and volume fractions of particles trapped in the condensed
combustion water, for two kinds of engines are reported in Table L.

It turns out that: A) dp =~ 2 nm for both ‘gasoline’ and ‘diese]”’ WT samples, which then fall into

the above defined range of "hyperfine" particles; B) the volume fractions fy = Np-(ndp3/6) of
particles in undiluted condensed combustion water is fy ~ 30 ppm and =~ 85 ppm, respectively,
which correspond, assuming spherical particles, to number concentrations Np of the order of 10'

particles/cm® in condensed water.
The third column in Table I reports the estimated ratios of the carbon content in WT samples
[Clwr to that of fuel [C]se, Which is of the order of 107

Discussion and conclusions

Firstly, it is worth stressing some features of the data set reported in the work. The spectral
measurements have been extended down to ultraviolet wavelengths as low as 190 nm and have
been obtained with a quite high signal-to-noise ratio, even though in unoptimized conditions.

The key-tool is the particularly intense ultraviolet emission of the light source, since it allowed
us to gather robust experimental results in a spectral region (A < 250 nm) where literature data
are scarcely available and yet physically relevant.

Retrieved values of particles' sizes and concentrations are quite surprising. Firstly, we have no
notice so far of similar findings in the exhausts of both 'diesel’ and spark-ignited engines. The
extremely small size of the particles suggests to look at them as molecular clusters, rather than
well-grown solid bodies, as even soot nuclei can be considered.

Further analysis of the extinction spectral data, detailed elsewhere [13], evidences the organic
composition of such matter, which includes aromatic functionalities, related to the existence in

the clusters of sub-units of two- and three-benzenic rings.




Also, the total number of particles emitted in the exhausts turns out to be equal or even higher
than those actually trapped in the condensed water, according whether water-trapping efficiency
is equal or less than unity, respectively.

Our preliminary data address the question about how and when such "hyperfine" particles are
formed, whether during high-temperature combustion processes, or by nucleation within the
exhaust tail-pipe, or even through condensation in water of organic vapors. To this end, it is
worth noting that our findings at the exhausts of i.c. engines parallel and extend recent
investigations in nearly-sooting flames [15], which reported the sequential formation in the
reaction zone of two distinct classes of carbonaceous particles, namely "hyperfine" organic
particles and "ultrafine" soot nuclei.

Our preliminary data on size and number of particles, detected in the exhausts of both diesel and
s.1. engines, encourage further investigations, since they involve quite important implications on

combustion processes, health effects, measurements requirements, exhausts aftertreatments.
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Figure 2: Optical setup for spectral extinction measurements

A) on air-diluted, AD, exhausts

B) on water-trapped, WT, samples

C) for scattering measurements on WT samples.

F, Ultraviolet light source, generated by optical breakdown of Nd-YAG laser pulses;
M1, ellipsoidal condensing mirror; M2, ellipsoidal collecting mirror;

SM+PAD, spectrometer+photodiode array detector assembly.



extinction coefficient [cm-1]

0.006

Extinction spectra of “air diluted" exhausts
from S.I. engine fuel: unleaded gasoline and Diesel engine

0.005 + 3000 rpm - 50% load

0.004 -

0.003 -

0.002 1 diesel

0.001 - gasoline

0 T T T T T T
190 220 250 280 310 340 370 400
wavelength [nm]

Figure 3A. :Extinction coefficient o, (A), in cm™ as a function of the wavelength in the
spectral range 190nm-400nm, for air-diluted (AD) exhausts from ‘gasoline’ (thin solid line)
and ‘diesel’ (thick solid line) engines, respectively.
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Figure 3B. :Extinction coefficient 0., (A), in cm’!, as a function of the wavelength in

the spectral range 190nm-400nm, for water-trapped (WT) exhausts from ‘gasoline’
(thin solid line) and ‘diesel’ (thick solid line) engines, respectively.
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Figure 4: Scattering efficiencies , units of cm™ sr’!, as functions of the wavelength in the
190nm-400nm ultraviolet band, for pure water (bottom), ‘diesel’ WT samples (thick solid
line), ‘gasoline’ WT samples (top). Also shown by dashed line is the scattering efficiency
of water, as predicted by density fluctuation theory.

Table I -
Engine Size [nm] Volume fraction [Clw/[Clruer
S.I. Unleaded "Gasoline" 2105 30 ppm 6.10°

Direct Injection "Diesel" 2+0.5 85 ppm 2.10"






