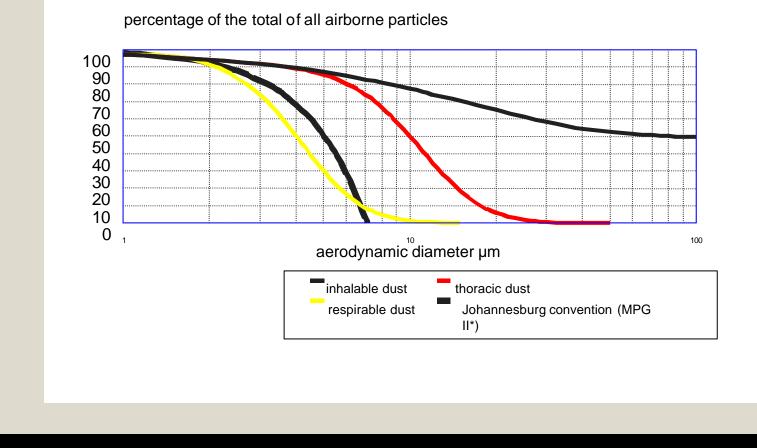
Nanoparticle emission measurement at the working place

# Nanoparticle measurement in workplace air

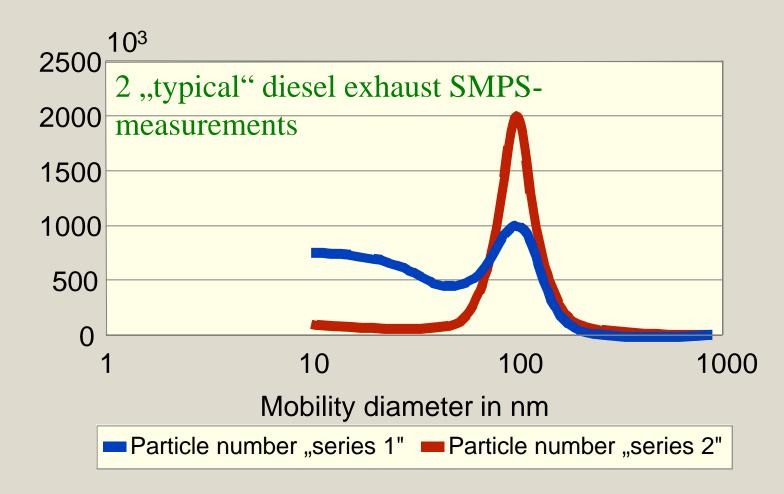
Dirk Dahmann, Bochum


## Contents

- Introduction
- Current state of particle measurement in the workplace
  - sampling and measurement procedures
  - standardisation
  - theshold limits
- New developments
- Current and future activities

## Particle measurement in workplaces - current state

- A very detailed landscape of mass-based threshold limits (particles and ,,chemical contents") as well as sampling and measurement procedures
- A well developed standardization scene (CEN, ISO)
- A wealth of experience (exposure data, sampling and measurement know-how, health effects, etc.)


## Sampling Conventions (EN 481)



## Samplers

- Respirable dust
  - stationary (elutriators, cyclones, special cases)
  - personal (mostly cyclones)
- Inhalable dust
  - stationary
  - personal
- Standards
  - EN 481 (sampling conventions)
  - prEN 13205 (sampler performance requirements)

### What is happening below 1 µm?



## Instruments - Principles

- SMPS (DMA + CNC)
- ELPI
- PAS
- DC
- NanoMet (PAS + DC + tunable dilution)
- Standards
  - none

## Problems:

- Currently diesel particulate matter (dpm) as well as welding fume in workplaces is measured with mass based procedures though there is a lot of evidence that particle mass may not be the relevant property with respect to health problems
- The particle number based procedures are currently not as well developed with respect to standardization as the mass based ones.

## Important questions for workplace exposure monitoring:

- Are existing threshold limits exceeded or not? (Compliance)
- What is the level of exposure in comparison to health effects observed in exposed workers? (Epidemiology)
- What are ,,low" (,,high") levels of exposure with respect to the state of art of emission control or personal protective devices? (Prevention and Compensation)

## To answer these questions measurement has to be:

• ... true

(as close as possible to the ,,true" value, whatever this is)

• ... reliable

(with as few as possible random deviations)

... comparable
 (give ,,very similar" results if done the same way by different people)

## Additionally:

- ... attempts should be made in order to show
  how ,,new" techniques are related to existing
  data in order not to lose available information!
  - Example: A huge amount of conimetric data existed in the German uranium mining of the former GDR. How do they ,,translate" into gravimetric ones?
  - Example II: Are measurements of respirable dust related to PM 10 measurements and if ,yes' how?

### Problems with this approach:

- Sometimes there is (or seems to be) no physical correlation between the two principles.
  - Example: conimetry and cyclone or elutriator pre-separation
- Nevertheless, under very similar circumstances (like in one specific mining environment) it may be possible to find emiprical "recalculation functions" and thus use the existing data.

#### What does this mean for diesel particles?

• Is mass-based measurement (like respirable dust sampling in connection with coulometry) really obsolete and irrelevant?

#### Answer:

- Maybe!
- But maybe not!
  - In cases of very similar particle number distributions mass based sampling would give very comparable answers to the question of ,,high" or ,,low" exposure compared to number based one.

## Coulometry

- Also, coulometry is the reference method.
  - It is extremely well validated and will even be standardized in a short time.
  - It did provide a wealth of data which have successfully been used for prevention purposes.
  - The initial objections against it with respect to engine development seem to have been premature! (Modern engine do have low mass emissions AND low particle number emissions)

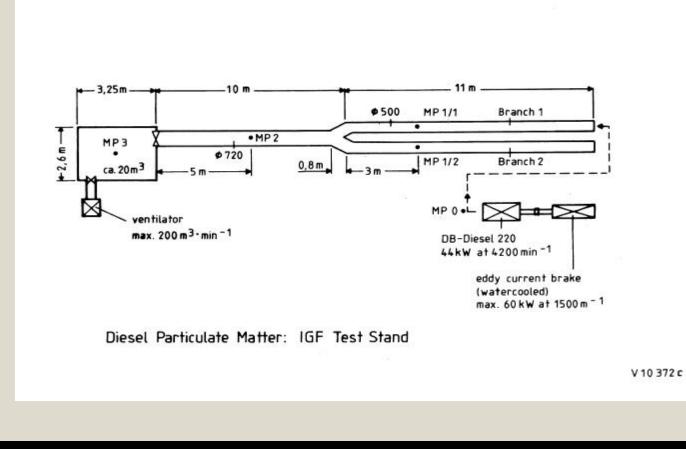
#### Current activities

- Use SMPS to measure typical exposure levels in workplaces to get basic ideas about possible problems (BIA, IGF, AUVA, ETH etc)
- Evaluate SMPS for possibilities of standardization (interlaboratory test in September 2000 with 10 different SMPSdevices in a diesel test stand in Dortmund)
- Evaluate PAS-systems in comparison to coulometric data (same test stand as above)

#### Project: PAS-evaluation

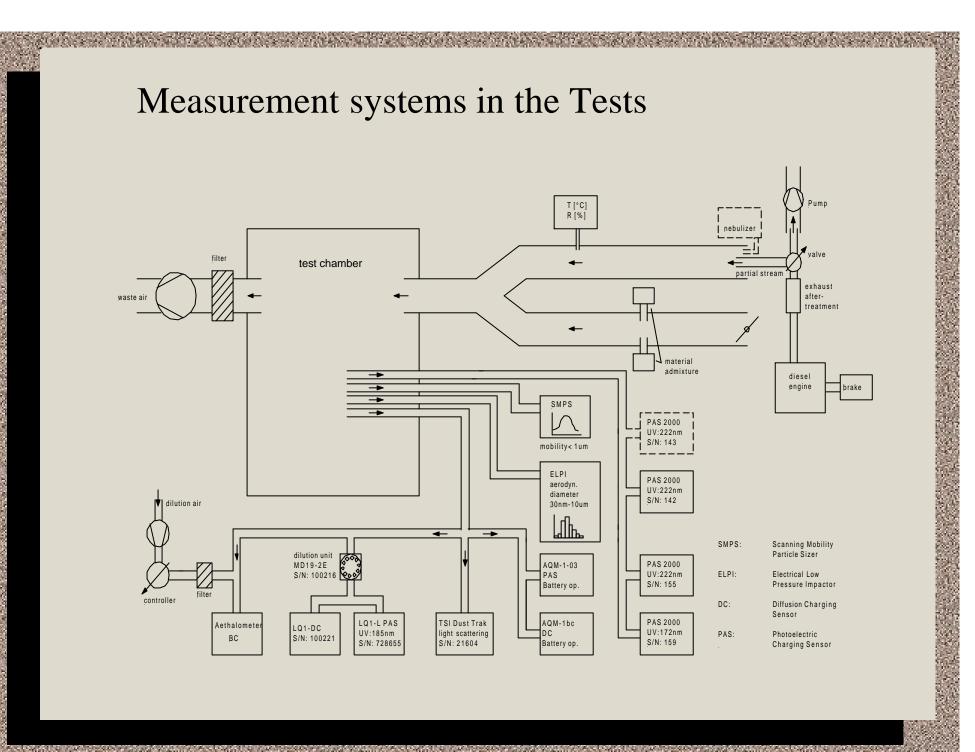
- Sponsored by Hauptverband der Gewerblichen Berufsgenossenschaften, St. Augustin, Germany
- How do PAS results compare to those of coulometry?
- Do recalculation algorithms to the coulometric results exist?
- Are the sensors behaving reliably in different workplace environments?
- How independent of the type of diesel source are their signals?
- Duration: Two years
- Partners:
  - ETH, Zürich, Switzerland and IGF, Bochum, Germany




## Principle methods:

- Field tests!
  - Parallel sampling and measurements in real workplaces
- Test chamber measurements!
  - Controlled conditions
  - stepped approach by variation of selected aerosol properties
- Both test methods should interact!

## Test chamber:


- diesel engine: (45 kW at 4200rpm, aspiration, eddy current brake)
- flow partitioning of raw exhaust
- y-shaped duct system (21 m, addition of different aerosol components possible)
- measuring chamber
   (20 m<sup>3</sup>, <0.1 m/sec flow)</li>
- ventilator (adjustable, <250 m<sup>3</sup>/min)

## Test channel - principle setup



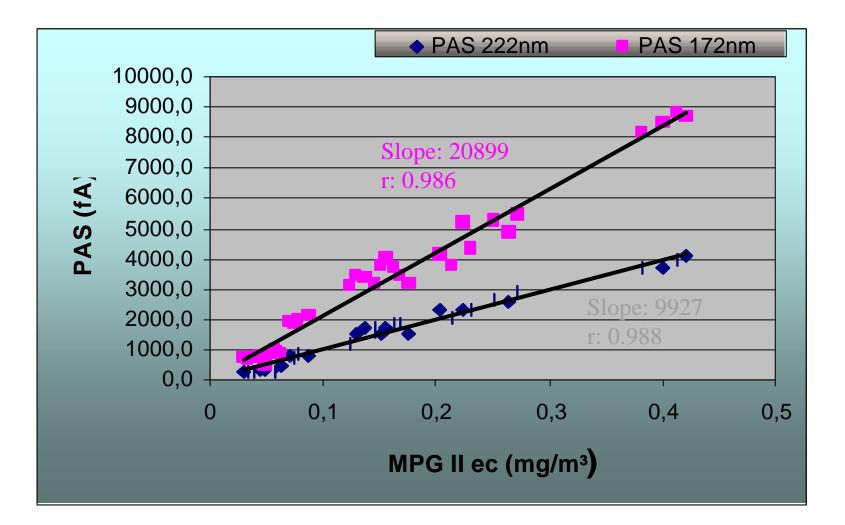
#### Instruments and Samplers in the Tests

| Samplers                  | PAS-Sensors | Others           |
|---------------------------|-------------|------------------|
| 2x MPG II static samplers | 172 nm      | 2x DC            |
| (46.5 l/min)              |             |                  |
| 2X PM4 F                  | 185 nm      | ELPI             |
| static samplers           |             |                  |
| (4 m³/h)                  |             |                  |
| 2 PGP FSP                 | 208 nm      | SMPS             |
| pds, 2 l/min              |             |                  |
|                           | 2x 222 nm   | Aethalometer     |
|                           |             | Dust Trak        |
|                           |             | Light scattering |



#### Work programme: test chamber

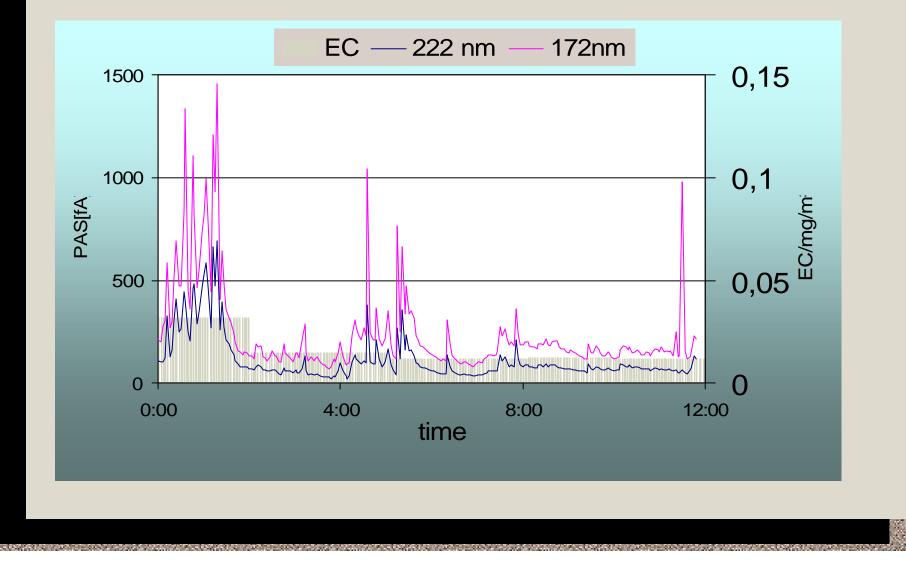
- Verify homogeneity and stability of aerosol generated
- Measure the performance of the filter samplers and decide on the reference method
- Compare the signals of the PAS-sensors with the coulometrically determined ecconcentrations at varying levels


#### Homogeneity of the test aerosol

#### **Overall Uncertainties (EN 482)**

| Conc. Levels\Samplers  | MPG II | PM4 F |
|------------------------|--------|-------|
| 0.5 mg/m <sup>3</sup>  | 7 %    | 8 %   |
| 0.2 mg/m <sup>3</sup>  | 3.2 %  | 7 %   |
| 0.1 mg/m <sup>3</sup>  | 3.5 %  | 7 %   |
| 0.05 mg/m <sup>3</sup> | 13 %   | 14 %  |

The sampling works surprisingly well
 The test aerosol is sufficiently stable


## Correlations of two selected PAS sensors - Examples of one measurement series (N=35)



### Field measurements

- A 24-h measurement campaign in a major bus repair shop:
  - the whole train of instruments (see above) went to the site
  - respirable dust sampling was performed in longer intervals
  - the sensors were used throughout the whole period

## Field measurements - example of a 12 h measuring episode



## Conclusions (up to now)

- The test chamber is well suited for the task providing homogenuous and well defined aerosols over extended periods
- The different PAS monitors (UV-lamps) have differing (however constant) calibration factors.
- The PAS sensors provide very valuable informations for workplace measurements
- There seem to be recalculation algorithms for PAS signals with respect to ec-concentrations.

### What needs to be done?

- Find out, how differing diesel sources (e.g. engine) change the nature of the PAS signals (and the ec-concentrations).
- Find out, how these effects (if any) will influence field measurements.
- Give recommendations for the application of PASsensors in workplace field measurements.

## Thank you for your attention!