Questionnaire from 3. ETH Workshop 1999

Results of the 3. Nanoparticle Conference Questionnaire

4th Nanoparticle Conference, ETH Zürich, 2000

john.mcaughey@aeat.co.uk

Structure

- Health Effects Of Vehicle Particulate Emissions
 generic issues
- Research Testing Of Vehicle Particulate Emissions
 - technical issues
- Current Measurement Procedures
- Existing Practices
- Conclusions

Response

- 42 responses, approximately 30% of attendees.
- W. Europe (84%) E. Europe (8%), US (8%)
- Respondents were affiliated with :
 - university & commercial R&D organisations,
 - government
 - automotive, fuels and after-treatment industries.
- majority of respondents have operational experience in the Vehicle Particulate Measurement field
- 85% willing to join internal network of expertise

Health Effects

- 66% believed there was insufficient evidence to link PM10 / PM2.5 to health effects
- 70% believed there was insufficient evidence to link Vehicle Particle Emissions to health effects
- Ambient measurement ranking = Number, Composition, Size, Mass
- Emissions measurement ranking = Number, Size, Composition, Mass

General Issues - Existing knowledge and future priorities

	PM ₁₀	VPEs	Priority
Link between ambient	2.5	2.3	4.3
measurements and sources			
Particle surface effects	2.1	2.3	4.1
Particle composition	2.2	2.5	4.1
Particle size	2.9	2.9	4.1
Human Studies	2.3	2.1	3.9
Epidemiology	2.6	2.1	3.7
Particle acidity	2.3	2.3	3.6
Particle solubility	2.7	2.7	3.4
Quantification of Health Costs	2.2	2.1	2.9
Animal Toxicology	3.0	2.2° 20	00 AEATeSnology

Research Testing Of Vehicle Particulate Emissions

- Do we have a mature understanding of VPE measurement?
 Y: 27%
- Can we define tail-pipe emission contributions to ambient PM?
- Total **Yes : 27%**
- Particle mass Yes : 41%
- Particle number Yes : 11%
- Particle size Yes : 18%
- Particle composition Yes : 22%

Composition / Metrics

- What elements of particle composition should we measure routinely?
 Carbon 35% Sulphate 32%
 Metals 24% Organics 29%
- What particle characteristics should be measured and what is the priority of measurement

Surface area	>	Size / mobility	>
Number	>	Mass	=
Composition			

- Defined Sampling Procedures
- Calibration Materials
- Formation of nanoparticles on combustion
- Defined Measurement Procedures
- After-treatment Effects

Highest Priority :

 - address needs for common sampling measurement and calibration procedures plus formation mechanisms

- Dilution Effects (Ratio, Rate)
- Instrument Intercomparison
- Modelling of particle formation in tailpipe
- Overall Measurement Uncertainty
- Humidity Effects

High Priority :

 - address specific measurement factors with greatest influence on reproducibility

- Additive Effects
- Sample Ageing
- Fate of volatile droplets / particles
- Correlation with Other Pollutants
- Temperature Effects

Medium Priority :

 - address specific measurement factors with greatest influence on transport to ambient environment

- Tunnel Losses
- Instrumentation Accuracy
- Instrumentation Reproducibility
- Flow Effects
- Correlation with regulated measurements

Low Priority :

 better understood variables of CVS tunnel and instrument

• Sampling Materials

Lowest Priority :

- - common reporting
- Defined Data Handling Procedures
- Defined size ranges
- Reporting Conventions
- Pressure Effects

Slide serial no 12 © 2000 AEA Technology plc

Current Measurement Procedures

• Are existing test cycles appropriate?

Yes 45% No 31% Don't Know 24%

- Are Standard CVS sampling conditions appropriate Yes 22% No 48% Don't Know 30%
- Is there an appropriate size cut for particle number?

Yes 30% No 30% Don't Know 40%

- Recommended Size Cut?
 - Median = 250 nm, Range = 5 nm 20 0 E Mile Serial no 13

Existing Practices

- Particle sizing instrumentation
- SMPS 48% DMPS 9% ELPI 15%
- Andersen 12% MOUDI 6%
- Light scatter 6% Time Of Flight 6%
- Nanomet / PAS 3% DMA 6%
- Routine composition
- • Carbon
 27%
 SOF
 15%

 • Metals
 3%
 PAH
 6%
- Sulphate 6% VOC 15% Slide serial no 14 © 2000 AEA Technology plc

Existing Practices

- Do you use secondary dilution afterCVS? Y: 35%
- Standard in-house measurement procedure?
 Y:61%
- Standard in-house sampling procedure? Y : 65%
- Routine calibration procedures? Y : 68%
- Willing to publish procedures for establishing common measurement guidelines or an intercomparison exercise? Y: 54%

Conclusions

- Good base level of understanding and skill applied to the measurement of vehicle particulate emissions.
- Specific measurement needs are split between basic and applied research issues.
- There remains a lack of knowledge as to the mechanics of nanoparticle formation and ageing
- There is a strong need for defined sampling and measurement procedures in this field, with appropriate calibration materials.
- These may be developed from existing procedures © 2000 AEA Technology plc used by individual laboratories