Influence of water emulsions on nanoparticle emission characteristics

Influence of AQUAZOLE, a Water in Diesel Fuel Emulsion on Nanoparticles Emission Characteristics

F. TORT
Centre de Recherche ELF Solaize
B.P. 22, 69360 SOLAIZE

4th - Conference on Nanoparticles Measurement 7-9 August 2000 Zürich

OBJECTIVES

- Investigate the influence of AQUAZOLE a Water in Diesel Fuel Emulsion on Nanoparticles emission using this fuel in a DIdiesel engine.
- Comparison of Particles Size Distribution of AQUAZOLE with EN590 Diesel Fuel.
- Study the influence of minerals present in Water in Diesel Fuel Emulsion on Nanoparticles size distribution and composition.

- EAF has mandated TTM to perform the measurement according to the VERT test program.
- Participating Laboratories and responsible persons
 - → Exhaust gas test center of the School of Engineering Biel (Measurements on engine test rig, leading the test program) : Prof. Dr. Jan Czerwinski, Dipl. Ing. S. Napoli
 - → Laboratory for Solid State Physics of the ETH (Federal Institute of Technology) Zurich, (aerosol Measurement technique) : Prof. Dr. H.C. Siegman, Dr. U. Matter,
 - → Matter Engineering : Dr. U. Matter, Dr. Kasper; DiplIng. Th. Mosimann.
 - → TTM Technik Thermische Maschinen, Niederrohrdorf; (project Management) : Dipl. Ing. A. Mayer

- Fuels investigated :
 - → Standard Diesel fuel EN590 (350 ppm S)
 - → AQUAZOLE Standard (13% water in EN590 diesel fuel)
 - → AQUAZOLE new formulation
 - → AQUAZOLE new formulation with demineralized water
- Analysis of PSD and on-line characterisation has been performed at 6 operating points

- Tested Engine :
 - → Liebherr I (Construction type engine Euro 0)
 - → Type : D914 T
 - → Cylinder volume : 6.11 liters
 - → Rated RPM: 2000 min-1
 - → Rated power : 105 kW
 - → Model: 4 cylinder in line
 - → Combustion process : Direct injection
 - → Injection pump : Bosch in-line pump
 - → Supercharging: Turbocharger without intercooling.
 - → Development period : 1986

Test procedure

- → 6 operating points have been performed and fixed on the basis of the cycle according to ISO 8178 C1 and D2 prescribed for off-road engines:
 - point 1 : full load, rated RPM
 - point 2 : full load, mean RPM
 - point 5 : rated RPM 50%
 - point 6 : mean RPM 50%
 - point 8 : mean RPM 25%
 - point 10 : mean RPM 10%
- → test concentrated on specific point considered representative.
- detailed measurements were made at each choosen operating point
- → Sequence of operating points : 10-8-6-2-1-5-2 repeat 2 (similar to ECE R49)

PARTICLES ANALYSIS

- Particle Size Distribution Analysis
 - → SMPS (Scanning mobility Particle Sizing) manufactured by TSI, model 3934.
 - → CNC (Condensation Nucleus Counter) TSI model 3025A
 - → Distinction between solid and volatiles particles using an activated charcoal trap developed at the ETH.
 - First the gas is heated to a well-defined temperature which may be increased stepwise. In the water cooled second stage the gas is guided through activated charcoal with a very large surface which adsorbs the major part of the re-condensing volatiles.
 - Technique allows a phase separated analysis of the particles.

PARTICLES ANALYSIS

- On-line measurements : PAS and DC
 - → particles are electrically charged and subsequently precipitated on a measurement filter with current amplifier
 - → measured current is proportional to the charging probability of particles
 - → In the diffusion charger (DC) positive ions from a corona discharge diffuse onto the particles. The electric charge acquired by a particle depends on the collision probability with the ions and is called Active Surface.
 - → In the Photoelectric Aerosol sensor (PAS) aerosol particles are illuminated by UV light and photoelectrically charged. As photoemission involves absorption of a photon by a particle bulk material and emission of an electron through the particle surface the resulting charge on the particles is proportional to the active surface and a material coefficient. PAS is then a selective soot sensor.

MEASUREMENT SCHEME

Engine: Liebherr D914T

measuring point 1 : 2000min⁻¹ / full load - mean of 3 samples

Engine: Liebherr D914T

measuring point 10 : 1400min⁻¹ / 10% load - mean of 3 samples

Engine: Liebherr D914T

measuring point 2 : 1400min⁻¹ / full load - mean of 3 samples

Engine: Liebherr D914T

measuring point 5 : 2000min⁻¹ / 50% load - mean of 3 samples

Engine: Liebherr D914T

measuring point 6: 1400min⁻¹ / 50% load - mean of 3 samples

Engine: Liebherr D914T

measuring point 8 : 1400min⁻¹ / 25% load - mean of 3 samples

Engine: Liebherr D914T

CONCLUSIONS

• SMPS measurements :

- → there is a bimodality of PSD with fuel emulsions which causes an increase of particulate counts in the lower size range (20-50nm).
- → minerals present in water are the source of the particles number increase in the lower size range (20-50nm).
- → the integrated particle number with AQUAZOLE new formulation and AQUAZOLE new formulation + demineralized water are lower than with AQUAZOLE standard.
- → the integrated particle numbers with AQUAZOLE new formulation + demineralized water are to the level or are significantly lower than with standard Diesel fuel. (excepted on point 6 and decrease up to 66%on point 10)

PARTICLE ON-LINE MEASUREMENT

Engine: Liebherr D914T

Comparison of PAS and DC sensors

PARTICLE ON-LINE MEASUREMENT

Engine: Liebherr D914T

Comparison of PAS and DC sensors

CONCLUSIONS

- On line measuring method: Photoelectric Aerosol Sensor (PAS) and Diffusion Charger (DC)
 - → The PAS signal indicate a reduction of carbonaceus particles with the 3 AQUAZOLE fuels.
 - → The DC signal shows a decrease of the total particle surface with the 3 AQUAZOLE fuels when compare to Standard Diesel Fuel.

GENERAL CONCLUSIONS

- There is a bimodality of PSD with Water in Diesel Fuel emulsion which causes an increase of particulate counts in the lower size range (20-50nm).
- Traces of minerals present in water are at the origin of the increase of the lowest size nanoparticles emitted by fuel emulsions.
- AQUAZOLE + demineralized water produce a number of particle to the level or significantly lower than with standard Diesel fuel. (excepted on point 6)

GENERAL CONCLUSIONS

 The 3 AQUAZOLE fuels produce a lower number of soot particles than standard Diesel Fuel (PAS).

 The 3 AQUAZOLE fuels reduce the total particle surface compare to standard Diesel Fuel (DC).

AKNOWLEGMENT

- → Exhaust gas test center of the School of Engineering Biel (Measurements on engine test rig, leading the test program) : Prof. Dr. Jan Czerwinski, Dipl. Ing. S. Napoli
- → Laboratory for Solid State Physics of the ETH (Federal Institute of Technology) Zurich, (aerosol Measurement technique): Prof. Dr. H.C. Siegman, Dr. U. Matter,
- → Matter Engineering : Dr. U. Matter, Dr. Kasper; DiplIng. Th. Mosimann.
- → TTM Technik Thermische Maschinen, Niederrohrdorf; (project Management) : Dipl. Ing. A. Mayer