Influences on measurement of ultrafine Particles

Stefan Carli, Volkswagen AG, D-38436 Wolfsburg Ulrich Matter, Thomas Mosimann, Matter Engineering AG, CH-5610 Wohlen

Influence of Sampling Conditions, Engine Load and Fuel Quality on Measurement of Ultrafine Particles from a Modern Diesel Vehicle

- Parameter Variation Measurement Results -

- 1. Load and fuel sulphur content influences on particle NSD and PM
- 2. What causes the nucleation particle mode, how are measurement conditions that provoke / avoid nucleation
- 3. Comparison of mobility size to aerodynamic size classification
- 4. Comparison of SMPS's used during the investigation
- 5. Summary / conclusions

- 1. Load and fuel sulphur content influences on particle NSD and PM
- 2. What causes the nucleation particle mode, how are measurement conditions that provoke / avoid nucleation
- 3. Comparison of mobility size to aerodynamic size classification
- 4. Comparison of SMPS's used during the investigation
- 4. Summary / conclusions

VOLKSWAGEN AG

VOLKSWAGEN AG

VOLKSWAGEN AG

VOLKSWAGEN AG

- 1. Load and fuel sulphur content influences on particle NSD and PM
- 2. What causes the nucleation particle mode, how are measurement conditions that provoke / avoid nucleation
- 3. Comparison of mobility size to aerodynamic size classification
- 4. Comparison of SMPS's used during the investigation
- 4. Summary / conclusions

NSD measurements along the tail pipe; influence of dilution ratio

NSD measurements along the tail pipe; influence of dilution ratio

VOLKSWAGEN AG

Influence of dilution ratio, dilution air humidity and temperature

Oxidation catalyst temperature - formation of nucleation particles

VOLKSWAGEN AG

Roller dynamometer transfer line - formation of nucleation particles

VOLKSWAGEN AG

- 1. Load and fuel sulphur content influences on particle NSD and PM
- 2. What causes the nucleation particle mode, how are measurement conditions that provoke / avoid nucleation
- 3. Comparison of mobility size to aerodynamic size classification
- 4. Comparison of SMPS's used during the investigation
- 4. Summary / conclusions

VOLKSWAGEN AG

VOLKSWAGEN AG

VOLKSWAGEN AG

Transmission electron microscope (TEM) analysis show <u>Morphology changes</u> Source: Dr. w. Koch et al, Fraunhofer-Insitut of Toxicology and Aerosol Research, Hannover

Diesel particle at low load

Diesel particle at high load

The relationship between aerodynamic and mobility diameter depends strongly on the fractal dimension of the agglomerate

- 1. Load and fuel sulphur content influences on particle NSD and PM
- 2. What causes the nucleation particle mode, how are measurement conditions that provoke / avoid nucleation
- 3. Comparison of mobility size to aerodynamic size classification
- 4. Comparison of SMPS's used during the investigation
- 4. Summary / conclusions

Comparison of SMPS-ETH and SMPS-FH Biel substitute (TSI)*

	Anzahl-K. [#/cm3]			Peak-Höhe [#/cm3]		
	SMPS ETH	SMPS Biel	Verh. ETH/Biel	SMPS ETH	SMPS Biel	Verh. ETH/Biel
Scan 1	3,30E+06	2,77E+06	1,19	4,92E+06	4,87E+06	1,01
Scan 2	3,13E+06	2,59E+06	1,21	4,48E+06	4,69E+06	0,96
Scan 3	3,06E+06	2,44E+06	1,25	4,60E+06	4,23E+06	1,09
Mittel	3,16E+06	2,60E+06	1,22	4,67E+06	4,60E+06	1,02

*Original instrument was for repair at TSI

VOLKSWAGEN AG

Comparison of SMPS-ETH and original SMPS-FH Biel*

	A	nzahl-K. [#/	cm3]	Peak-Höhe [#/cm3]		
	SMPS ETH	SMPS Biel	Verh. ETH/Biel	SMPS ETH	SMPS Biel	Verh. ETH/Biel
Scan 1	2,099E+05	1,394E+05	1,51	3,108E+05	2,405E+05	1,29
Scan 2	2,166E+05	1,326E+05	1,63	3,083E+05	2,317E+05	1,33
Scan 3	2,181E+05	1,293E+05	1,69	3,157E+05	2,236E+05	1,41
Scan 4	2,165E+05	1,288E+05	1,68	3,060E+05	2,239E+05	1,37
Mittel	2,153E+05	1,325E+05	1,62	3,102E+05	2,299E+05	1,35

*Original instrument was for repair at TSI

VOLKSWAGEN AG

Group Research

Summary / conclusions

- Measuring NSD at higher load the formation of nucleation particles occurs, especially with high sulphur fuel
- Already little variation of CVS-DR has a strong effect on particle number and size (no reproducible measurements possible)
- Provoke nucleation: Low DR, cold humid dil-air, high sulphur fuel
- Avoid nucleation: High DR > 50, hot dil-air, sulphur free fuel
- Good correlation between PM and Total Number excluding nucleation effect
- Oxidation catalyst seems to be the main cause for nucleation particles
- "Memory effect" of exhaust line probable
- No significant nucleation particle effect observed from transfer line
- Relationship between aerodynamic and mobility diameter depends on particle morphology (density), morphology changes dependent on load and fuel quality
- High discrepancy in particle number and size comparing SMPS's only good for relative measurements as long as no reliable standard exists

Dr.Carli: ETH-Conf-01 "Nanopartikel"22

Acknowledgements

Thank you to

Dr. Ulrich Matter and Thomas Mosimann for the excellent work and the very good collaboration