Effect of lubricant sulfur levels on nanoparticle emissions

Effect of Lubricant Sulfur Levels on Nanoparticle Emissions

Mridul Gautam and Khaled Mostafa NATIONAL RESEARCH CENTER FOR ALTERNATIVE TRANSPORTATION FUELS, ENGINES AND EMISSIONS WEST VIRGINIA UNIVERSITY

Michael McMillian

USDOE- NATIONAL ENERGY TECHNOLOGY LABORATORY

OBJECTIVES

INVESTIGATE THE EFFECT OF LUBRICANT SULFUR CONTENT ON SIZE DISTRIBUTIONS AND CONCENTRATIONS OF PARTICULATE MATTER EMISSIONS FROM ENGINES OPERATING ON FOSSIL-FUEL DERIVED ULTRA-LOW SULFUR FISCHER-TROPSCH FUEL, AND FEDERAL ON-HIGHWAY DIESEL FUEL.

APPROACH

OPERATE A RICARDO PROTEUS, DIRECT INJECTION, SINGLE-CYLINDER RESEARCH ENGINE ON:

FEDERAL ON-HIGHWAY DIESEL NO. 2 (343 ppm SULFUR) FOSSIL-FUEL DERIVED FISCHER-TROPSCH FUEL (<3 ppm SULFUR)

OPERATE THE ENGINE ON BOTH FUELS WITH:

COMMERCIALLY AVAILABLE LUBE OIL (4500 ppm SULFUR) ULTRA-LOW SULFUR CONTENT LUBE OIL (280 ppm SULFUR)

APPROACH

ENGINE OPERATING CONDITIONS:

ENGINE CONDITION 1 LOW SPEED/NO LOAD 12 rps, 2 bar BMEP, 0 kPa Boost ENGINE CONDITION 2 INTERMEDIATE SPEED/INTER. LOAD 24 rps, 8 bar BMEP, 54 kPa Boost ENGINE CONDITION 3 INTERMEDIATE SPEED/HIGH LOAD 24 rps, 16 bar, 125 kPa Boost ENGINE CONDITION 4 HIGH SPEED/HIGH LOAD 36 rps, 12 bar, 160 kPa Boost

EXHAUST SAMPLE WAS DRAWN INTO A MINI-DILUTION TUNNEL ("SECONDARY-DILUTION TUNNEL" TYPE SYSTEM) THROUGH A HEATED LINE

EMPLOYED AN SMPS WITH ULTRA-FINE CPC (TSI MODEL 3025)

MINI-DILUTION TUNNEL AND SMPS

FUEL AND LUBRICANT SULFUR CONTENT

FUEL/LUBE	SULFUR
D2	343 ppm
FT	0
HSL	4500 ppm
LSL	280 ppm

TEST MATRIX

E.C.	LUBRICANTS	FUELS
1	HSL	FT, D2
1	LSL	FT, FT343,D2
2	HSL	FT, D2
2	LSL	FT, FT15, FT50, FT120, FT343, FT2000, D2
3	HSL	FT, D2
3	LSL	FT, FT343,D2
4	HSL	FT, D2
4	LSL	FT, FT15, FT50, FT120, FT343, FT2000, D2

EC-1 (Low Speed/Low Load) HIGH SULFUR LUBE, D2 vs. FT

EC-2 (Intermediate Speed/Intermediate Load) HIGH SULFUR LUBE, D2 vs. FT

Morgantown,WV 26506

EC-2 (Intermediate Speed/Intermediate Load) HIGH AND LOW SULFUR LUBE, FT

EC-2 (Intermediate Speed/Intermediate Load) LOW SULFUR LUBE, FT – DOPED

We Mo

EC-3 (Intermediate Speed/High Load) HIGH AND LOW SULFUR LUBE, FT

EC-4 (High Speed/High Load) HIGH AND LOW SULFUR LUBE, D2

EC-4 (High Speed/High Load) LOW SULFUR LUBE, FT – DOPED

V

CONCLUSIONS

REDUCING FUEL SULFUR LEVELS ALONE MAY NOT BE AN ANSWER TO REDUCING NANOPARTICLE CONCENTRATIONS IN DIESEL EXHAUST EMISSIONS.

LUBE OIL SULFUR LEVELS AND ADDITIVE PACKAGES DO HAVE A PROFOUND INFLUENCE ON SIZE DISTRIBUTIONS AND CONCENTRATIONS OF PM EMISSIONS.

NANOPARTICLES ARE GENERATED AS A RESULT OF HGHLY COMPLEX INTERACTIONS BETWEEN FUEL AND LUBE OIL HYDROCARBON CHEMISTRY AND SULFUR CONTENT, ENGINE OPERATING MODES, THE EXHAUST DILUTION SYSTEM ITSELF (IN ADDITION TO DILUTION CONDITIONS). ACKNOWLEDGMENTS

U.S. DEPARTMENT OF ENERGY, NATIONAL ENERGY TECHNOLOGY LABORATORY

• CTC

