Response of DC and PAS to size fractionated particles

Response of DC and PAS to size fractionated particles

H. Jung, D.B. Kittelson and M.R. Zachariah

Dept. of Mechanical Engineering University of Minnesota

5th ETH Conference on Nanoparticle Measurement

Zurich 6 August 2001

Typical Diesel Particle Size Distributions, Number, Surface Area, and Mass Weightings Are Shown

Surface area measurements

- Some health studies suggest that biological response is better correlated with surface area than with mass or number
- Most surface area instruments are relatively new and incompletely characterized
- The are currently no standard calibration methods or standards
- The work described here focuses on the Fuchs or "Active" surface area

Surface area instruments

- Epiphaniometer (EPI) well characterized but slow response (≅ 5 minutes)
- Diffusion charger (DC)
 - Matter Engineering conventional and portable instruments available
 - Dekati
 - TSI calibrated in length, not surface (mm/cm³)
- Photoemission aerosol sensor (PAS) photoelectron emission equivalent surface polycyclic response
- This presentation describes initial characterization of and comparison of Matter Engineering DC and PAS. Ongoing work includes portable DC and PAS, EPI, and TSI DC

Definition of Fuchs Surface

$$A_{Fuchs_FM} = \pi \cdot D^{T}$$

$$A_{Fuchs_CONT} = 2\pi \cdot I \cdot (A+Q) \cdot D$$

$$A_{Fuchs} = \frac{\pi (A + Q) \cdot D^{2}}{\frac{D}{2 \cdot I} + \left(A + Q \cdot \exp\left(\frac{-b \cdot D}{2 \cdot I}\right)\right)}$$

- *I* Mean free path of particle in gas(65nm for air)
- A,b,Q Cunningham fit parameters
- *A* = 1.257
- Q = 0.40
- *b* =1.10

Objectives

- Characterize the response of a photoemission aerosol sensor (PAS) and a diffusion charger (DC) with *mono-area* selected particles from engine exhaust and standard laboratory aerosols.
- Determine if there are particle size effects to the response of the surface instruments.
- Influence of particle composition on the response of the surface instruments.

Experimental setup

Aerosol sources

- Medium-duty, direct injection, turbocharged Diesel engine – all tests at 1400 rpm
 - -10% load, large nuclei mode, VOF $\cong 60\%$
 - -50% load, no nuclei mode, VOF $\cong 30\%$
 - -75% load, no nuclei mode, VOF $\cong 15\%$
- Collison atomizer
 - Ammonium sulfate
 - DOS
 - Engine oil
- Ethylene flame (ongoing)

Detection limit of diffusion charger

- The claimed resolution of the instrument is 1cm²/m³- we have assumed that that is also the lower useful detection limit.
- It is often difficult to produce very high concentrations of monodisperse aerosols with a DMA
- •All the measurement should be above the detection limit curve to yield meaningful data

Linearity of the diffusion charger

•Concentration was varied at a DMA fixed mobility diameter by changing the dilution ratio for the linearity check of the instrument.

• Two different engine loads were tested.

DC response to Total Fuchs Area (Fuchs Area(D_p) * CPC number)

DC vs. Total Fuchs Area

DC/Total Fuchs Area

- DC/Total Fuchs Area plot contains more information on the instrument than DC vs. Fuchs plot.
- The output near the lower detection limit gives inconsistent data.

The effect of the humidity on the response of the DC

• Humidity of the carrier gas affects to the response of the diffusion charger.

• Additional study is needed for the particles below 80nm in diameter at higher concentration to clarify the effect of size on the response of DC.

PAS and DC response

Using dried dilution and sheath air 100 100 0 0 0 0 0 DC/Total Fuchs Area 12.1 PAS/Tfuchs 8 8 10 10 8 11.6 Δ Δ 8 10% load 🗖 10% lo a d △ 50% load $\Delta 50\%$ load 075% load • 75% load 1 1 50 100 150 0 200 0 50 100 150 200 Dp[nm] Dp[nm] 6 0 5 10% load • PAS response is dependent on engine load, A SVDC △ 50% load 0 • 75% load i.e., on chemical composition while DC response is not. 0 0 0 2 Δ 1 Δ ∂ 0 50 150 0 100 200

Dp[nm]

PAS/Tfuchs-All driers renewed plus dry sheath air

Conclusions

- This is the first report on an ongoing study
- The DC showed a significant response to humidity the conclusions below are for well dried dilution and DMA sheath air
- The DC response to Diesel particles is proportional to the Fuchs Surface and independent of size (above 80 nm) and composition.
- The PAS response to Diesel particles is proportional to the Fuchs Surface and independent of size (above 80 nm) but depends upon composition.

Future Studies

- The influence of humidity on instrument response must be resolved
- The apparent decrease in sensitivity below 50 nm needs further study
 - Electro spray
 - Condensation aerosols
 - Flame aerosols
- A neutralizer was not used between the DMA and the instruments tests with neutralizer planned
- Continuing work will include the EPI and the TSI DC

Acknowledgements

This work was partially funded by the Coordinating Research Council and the U.S. Office of Heavy Vehicle Technologies through NREL with co-sponsorship from the Engine Manufacturers Association, the Southcoast Air Quality Management District, and the California Air Resources Board.