Influence of oxygenated fuels on the sooting behaviour within a laminar diffusion flame

PAUL SCHERRER INSTITUTE

5th ETH Conference on Nanoparticle Measurement, Zürich 6./7. August 2001

Influence of oxygenated fuels on the sooting behaviour of laminar diffusion flames

Stephan Kunte

I.C. Engines and Combustion Laboratory, ETH Zürich www.lvv.iet.mavt.ethz.ch

Motivation

- insight into the soot problematic as well as *better understanding of the underlying mechanisms*
- investigation of the influence of oxygenated fuels on the soot production and oxidation
- basic work with the pretension of at least partially transferability on Diesel combustion

PAUL SCHERRER INSTITUTE

Framework of soot research LVV/PSI

fundamental research

engine application

PAUL SCHERRER INSTITUTE

Overventilated laminar diffusion flame

Wolfhard-Parker burner

side view

front view

PAUL SCHERRER INSTITUTE

Experimental set-up / measuring techniques

5th ETH Conference of Nanoparticle Measurement, 6./7. August 2001

PAUL SCHERRER INSTITUTE

Experimental set-up

calibration lamp suction 2-color pyrometry burner xyz-traversion industrial mechanism pyrometer movable mirror ilter ben

DiCam Pro with 200mm UV lens

5th ETH Conference of Nanoparticle Measurement, 6./7. August 2001

filter wheel with motor

SensiCam with 200mm lens

Zurich

Results: evaluation strategy

Results: LII global flame

Ethylene

Ethylene

DME

PAUL SCHERRER INSTITUTE

Results: OH-LIF global flame

Ethylene

		-61 -2.	-61 -2. 91. **.		401 42. 91. *.	-5: 2. 9. *	-61 -2.	-51 2. 9. *.	-51 4. 9.	-51 2. 9.
- 35 - 36 - 27 - 27 - 27 - 27 - 27 - 27 - 27 - 2	- 33 - 36 - 27 -			-33		- 33 - 36 - 27			21	
		- 22- - 40- - 40- - 43-	- 22- 9 - 00 ⁺ - 00 ⁺		2. A a a	- 24- - - - - - - - - - 	- 22- - 9 - 60* - 65*	-2 	- 22- - 44- - 44- - 44-	- 22- - 47 - 10- - 16-
41- 01 91	4** 01 8.	- 1*** 91 8.	4** 91 8.	-+ 0: 8.	0: 5.	4 01 6.	1+- 0: 8.	4** 91 8.	01 8.	- 4×- 91 8.
				an sen sen in ar sen sen tut ar		an en on in ar en on juj or		-20-40 -20 -20 -20 -20 -20 -20 -20 -20 -20 -2	an ar	

Results: soot content flames

Comparison of soot content within Ethylene/Ethane flame

Ethylene <-> Ethane

Ethylene <-> DME

Results: soot reduction potential of oxygenated fuels

5th ETH Conference of Nanoparticle Measurement, 6./7. August 2001

Conclusions

- oxygenated fuels can -in small amounts- increase the soot production

- in higher quantities, oxygenated fuels do reduce the soot tendency

- oxygenated fuels show a clear **chemical influence** on the sooting behaviour of diffusion flames

Swiss

Acknowledgement

Financial Support

Bundesamt für Energie (BfE), Switzerland

Persons

- Alexios Tzannis
- Peter Radi
- Marek Tulej
- Thomas Gerber
- Konstantinos Boulouchos