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Soot particles are emitted by all kinds of incomplete combustion processes and consist of a 
mixture of elemental and organic carbon (EC an OC). Besides the soot mode at a diameter of 
about 100 nm a second mode is clearly seen in traffic-influenced areas, with a mode around 
20 to 30 nm (Bukowiecki et al., 2002). These particles are formed by condensation of 
semivolatile exhaust components and therefore disappear to a large extent in a thermal 
desorber (Baltensperger et al., 2002). Coagulation results in a rapid decrease of the number 
concentration of these condensation particles (typically 1 hour, Bukowiecki et al., 2002), 
while the soot particles have much longer life times. Atmospheric processes result in a 
significant change of the chemistry of these soot particles.  
Hygroscopicity measurements are a suitable means to detect the degree of this chemical 
transformation, since most of these aging processes lead to an enhanced water solubility of the 
particles. Hygroscopicity measurements with a tandem differential mobility analyzer 
(Weingartner et al., 2002) are a highly suitable means for the determination of the growth 
factor (i.e., the diameter d for a specified high relative humidity RH divided by the dry 
diameter, d0).  
Directly after their emission, soot particles are hydrophobic, i.e., both EC and OC are water 
insoluble, and the particles grow only little upon exposure to high RH (Weingartner et al., 
1997, Baltensperger et al., 2002). Under these conditions, the growth factor can be attributed 
to the amount of water soluble inorganic species adsorbed on the soot particles (Weingartner 
et al., 1997). At moderately high sulfur content of the fuel this mainly corresponds to sulfate 
(Gysel et al., 2002).  
After aging, i.e., at a remote site such as the Jungfraujoch in the Swiss Alps (3580 m asl), the 
soot particles are most probably internally mixed with a high fraction of water soluble 
material (typically 80 to 90%), which results in a monomodal distribution of the growth 
factor, with growth factors of 1.55, 1.62, and 1.67 for do = 50, 100, and 250 nm, respectively, 
at RH=90% (Weingartner et al., 2002). Typically 50% of the organic carbon of this aged 
aerosol is water soluble (Krivacsy et al., 2001).  
A number of processes may contribute to this increased growth factor, including coagulation 
with water soluble particles, gas to particle conversion (heterogeneous nucleation), adsorption 
and reaction of gaseous molecules, (photo)-chemical degradation of the aerosol particle 
surface, and cloud processing. Coagulation is not very efficient in changing the chemical 
characteristics of the soot particles. Much more efficient is the condensation of condensable 
molecules such as secondary organic aerosol produced by photochemical oxidation of gaseous 
precursors (Saathoff et al., 2002). This condensation significantly changes also the optical 
properties of the soot particles, since a layer of scattering material greatly enhances the 
absorption efficiency of the soot (Schnaiter et al., 2002). Absorption and reaction of gaseous 
molecules may also result in significant changes of the chemistry of the soot particles, even 
though this process is usually limited to the surface of the particles. This is exemplified by the 
reaction of NO2 with diesel soot (Gutzwiller et al., 2002 and references therein). Processes of 
this type may be responsible for an increased hygoscopicity on aging diesel soot particles in a 
dark bag (Weingartner et al., 1995). (Photo)- chemical degradation may be exemplified by the 
rapid decrease of polycyclic aromatic hydrocarbons on the surface of soot particles by 



reaction with NO2 or OH (E. Villenave, pers. communication), or with ozone (Pöschl et al., 
2001). Finally, cloud processes are also an efficient process in adding water soluble material 
to the aerosol particles, e.g. by SO2 oxidation in the cloud droplets. However, for this process 
the particles require a certain size to be activated during cloud formation (Henning et al., 
2002). 
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Aerosol size distributions in the Zurich area
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Size distribution and non-volatile fraction 
of traffic aerosol in Milan
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Setup of the Hygroscopicity Tandem DMA      
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Hygroscopic growth factor of 20-nm particles in Milan
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Hygroscopic Growth Factor of 
Aerosol Particles in Milano and at the Jungfraujoch
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Possible reasons for increasing 
hygroscopicity with aging time

• Coagulation with water soluble particles
• Gas to particle conversion (heterogeneous nucleation)
• Adsorption and reaction of gaseous molecules
• (Photo)-chemical degradation of aerosol particle 

surface
• Cloud processing
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HTDMA size spectra of a mixture of 
Diesel and (NH4)2SO4 aerosols
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After drying, 190-nm particles are selected and exposed to high RH



Possible reasons for increasing 
hygroscopicity with aging time

• Coagulation with water soluble particles
• Gas to particle conversion (heterogeneous nucleation)
• Adsorption and reaction of gaseous molecules
• (Photo)-chemical degradation of aerosol particle surface
• Cloud processing
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Change of the hygroscopic growth factor of Diesel soot 
by condensation of oxidation products of α-pinene
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Aethalometer Data (corrected for shadowing effect and multiple scattering) 
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Diesel soot particles with scattering material



Possible reasons for increasing 
hygroscopicity with aging time

• Coagulation with water soluble particles
• Gas to particle conversion (heterogeneous nucleation)
• Adsorption and reaction of gaseous molecules
• (Photo)-chemical degradation of aerosol particle 

surface
• Cloud processing

Paul Scherrer Institut ⋅ CH-5232 Villigen PSI



Adsorption and reaction of aerosol particle 
surface: Reaction of NO2 with diesel soot
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Relative increase of the growth factor 
of soot particles on aging in a dark bag
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Possible reasons for increasing 
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KINETICS OF REACTIONS OFKINETICS OF REACTIONS OF PAHsPAHs IN IN 
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Possible reasons for increasing 
hygroscopicity with aging time
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Cloud processes
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Conclusions

• Aging processes transform soot from an external to 
an internal mixture

• Major changes of soot characteristics by 
condensation and cloud processes

• Changes reflected in changes of hygroscopicity, 
optical properties, etc.

• Surface reactions may also change gas phase 
chemistry
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