6th International ETH Conference on Nanoparticle Measurement August 19-21, 2002

PREDICTION OF NUCLEATION AND COAGULATION MODES IN THE FORMATION OF DIESEL PARTICULATE MATTER

Donghee Kim and Mridul Gautam Department of Mechanical and Aerospace Engineering West Virginia University Morgantown, WV 26506

Additional Details Available From the Following Papers

1.

2.

3.

4.

5.

- "On the Prediction of Concentration Variations in a Dispersing Heavy-duty Truck Exhaust Plume Using k-e Turbulent Closure", Atmospheric Environment, Vol. 35(31), pp. 5267-75 (2001) "Modeling Nucleation and Coagulation Modes in the Formation of Particulate Matter Inside a Turbulent Exhaust Plume of a Diesel Engines", Journal of Colloid and Interface Science, Vol. 249(1), pp. 96-103 (2002) "Effect of Ambient Dilution on Coagulation of Particulate Matter in a Turbulent Dispersing Plume", Air Emissions From Mobile Sources-Recent Data and Trends (Session Code: ENV4) at SAE Congress 2002, Cobo Center, Detroit, MI, March 4-7, 2002, **SAE Paper Number 2002-01-0652** "Prediction of Pollutant Concentration Variation Inside a Turbulent Dispersing Plume Using PDF and Gaussian Models", Air Emissions From Mobile Sources- Recent Data and Trends (Session Code: ENV4) at SAE Congress 2002, Cobo Center, Detroit, MI, March 4-7, 2002, SAE Paper Number 2002-01-0654
 - "Effect of Soot on Nox in Industrial Furnaces", AFRC Fall Symposium, San Francisco, CA, October 4, 1999

Particulate Matter Formation

•Particulate Matter in Diesel Exhaust Continuous Transformation: Nucleation, Coagulation, Condensation and Evaporation of Organics and Inorganics

Fate of Condensable Organics and Inorganics

- Affected by Atmospheric Aging and Dilution of the Exhaust Stream
- Process of Changing Size Distribution-Nucleation, Coagulation and Condensation

 To Predict the Nucleation, Coagulation, and Dynamics of Particulate Matter Emissions in the Plume of a Class-8 Diesel-fueled Tractor Operating at 55 miles/hour.

> To Predict the Structure of Plume, Including Variation of Temperature, Concentration and Dilution Ratio

Technical Approach

- Predicted CO₂ concentration, dilution ratio, and temperature variations inside the plume using CFD models
- Solved-using FLUENT Solver
 - k-ɛ turbulent closure, eddy dissipation species transport, energy equation
- Included effect of nucleation, condensation, and coagulation of particulate matter formation, simultaneously
- With this method, the data required to solve these equations was significantly reduced.
- Particle concentration predicted based on the sulfur content of fuel,
 F/A ratio and ambient conditions

Plume Models

- Empirical Gaussian Models (Kaharabata et al., 2000, Hanna, 1984)
- Similarity Models (Obasaju and Robins, 1998, Huai and Li, 1993)
- Probability Density Function Models (PDF) (Reynolds, 2000)
- k-ε Models (Sharan and Yadav, 1998, Hwang and Chiang 1988)
- Statistical Models (Heinz and vanDop, 1999, Sawford, 1983)
- Large Eddy Simulation Models (LES) (Sykes *et al.,* 1984)

Typical Structure of Engine Exhaust Particles

Nucleation Process

- Homogeneous nucleation (Springer, 1978)
 - In the absence of condensation nuclei
 - Require large saturation ratio (S>1)
- Heterogeneous nucleation
 - Occurs on a foreign substance or surface, such as an ion or a solid particle
- Binary homogeneous nucleation
 - Two or more vapor species

(Baumgard and Johnson, 1996)

Nucleation Process (Cont'd)

- Certain number of H₂O and H₂SO₄ molecules collide For critical cluster- sufficient energy to be stable
 - Greater than critical size, grow (less, shrink)
 - Rate of nucleation (H₂SO₄ hydrate (embryo) formation predicted by Reiss, 1950):

$$J = C \exp(-\Delta G^* / kT)$$

(Grow past critical size) Higher nucleation rate occurs at higher relative humidity, and lower temperature

C is the frequency factor, k is the Boltzmann's constant, T is the temperature and ΔG is the free energy required to form an embryo

Coagulation Model

• Integro-Differential Equation

$$\frac{\partial n(v,t)}{\partial t} = \frac{1}{2} \int_{*}^{v} \beta(v - \widetilde{v}, \widetilde{v}) n(\widetilde{v}, t) n(v - \widetilde{v}, t) d\widetilde{v} - \int_{0}^{\infty} \beta(v, \widetilde{v}) n(v, t) n(\widetilde{v}, t) d\widetilde{v},$$

$$n(v,0) = n_{0}(v),$$

$$n(v,t) = 0$$
Augmentation Term Depletion Term

- Simple Monodisperse Coagulation (Hinds, 1982)
 - Particles are monodisperse, contact one another, grow slowly.
- Polydisperse Coagulation
 - Governed by diffusion of particles to the surfaces of other particles

Techniques For Solving Coagulation Equations

- J-space Transformation (Yom and Brock, 1984)
- Asymptotic solution (Pilinis and Seinfeld, 1987)
- Discrete method (Tambour and Seinfeld, 1980)
- Moment method (Williams and Loyalka, 1991; McGraw, 1997)
- Parametrized Representation (Whitby, 1985)
- Similarity solution (Friedlander and Wang, 1966)
- Direct simulation by Monte Carlo method (Kruis et al., 2000; Maisels et al., 1999)
- Semi-implicit Finite-Difference Scheme (Jacobson *et al.*, 1994)
 Most Generic

GOVERNING EQUATION

The evolution of PM size distribution due to coagulation, nucleation and condensation is represented by the discrete dynamical equation:

(Sienfeld and Pandis, 1997)

GOVERNING EQUATION

To account for the simultaneous effects of nucleation, coagulation, and condensation the general formula for volume-conserving, semiimplicit equation can be solved (Jacobson et al., 1994; Kim et al., 2001) to predict the concentration variation of PM in the exhaust plume of a diesel truck traveling at highway speeds:

$$v_{k}C_{k}^{t+1} = \left(\frac{v_{k}C_{k}^{t} + \Delta t\sum_{j=1}^{k} \left\{\sum_{i=1}^{k-1} f_{i,j,k}\beta_{i,j}v_{i}C_{i}^{t+1}C_{j}^{t}\right\} + \Delta tv_{k}J(t)\delta((k) + \Delta tv_{k}\beta_{1,k-1}C_{1}^{t+1}C_{k-1}^{t+1}}{1 + \Delta t\sum_{j=1}^{N_{B}} (1 - f_{i,j,k})\beta_{k,j}C_{j}^{t} + \Delta t\beta_{k,j}Ct_{1}}\right)\frac{1}{Dilution Ratio}$$

SIMULATION CONDITIONS

- Class-8 tractor heavy-duty diesel truck (330 hp) in a wind tunnel discretized using approx. 500,000 hexahedral and tetrahedral control volumes (cells).
- Steady state operation at 55 mph
- Exhaust exit velocity 29.8 m/s, Wind velocity 24.6 m/s
- Standard k- ϵ turbulence closure and finite rate chemistry/eddy dissipation
- Background concentration of CO₂ (640 ppm), raw exhaust (60,000ppm)

Computational Grid of the Truck Inside the Wind Tunnel

Filled Contours of Relative Concentration of CO₂ Inside the Wind Tunnel

Relative Concentration (R_c) is defined as the ratio of the CO₂ concentration at a given location (x,y,z) to the raw exhaust CO₂ concentration (C_0)

Contours of Relative Concentration of CO₂ Inside the Tunnel on a Plane Passing Through Exhaust Pipe

Relative Concentration of CO₂ Along the Centerline of Plume

• R_c of CO₂ dropped rapidly in 100" -small flow rate of exhaust

 $R_{c} = \frac{C(x, y, x) - Background \ Concentration}{C_{o} - Background \ Concentration}$

Velocity Vectors Showing Recirculation Near the Exhaust Pipe of the Tunnel

Significant recirculation of the flow below wind deflector

Dispersion coefficient not constant

CO₂ Concentration Inside the Plume Perpendicular to the Centerline

 CO_2 Concentration (ppm)

- •Asymmetry of plume presence of wall
- Re-circulation region (undercarriage of flow)
- Symmetry of the plume- at large distances downstream

Dilution Ratio of CO₂ along the Centerline of Plume

Increased rapidlyhigher flow rate of air

Temperature Along the Centerline of Plume

Distance from the stack (in)

Rapidly decreased

 -dilution increased
 - 100 inches (75 °F)

Relative Concentration of CO₂ near the Moving Gantry inside Wind Tunnel

Variation of CO₂ Concentration inside the Plume Perpendicular to the Centerline near Moving Gantry

- Better agreement with experimental data than simulation without the gantry at 20 inches downstream from stack
- Will not affect significantly far away due to high dilution ratio

COMPUTATIONAL GRID OF TRACTOR-TRAILER

- Traditionally, the trucks are accompanied by the trailers.
- Tractor-trailer recreated using FLUENT software.
- Same velocity and temperature boundary conditions.

Contours of Relative Concentration of CO₂ on Tractor-Trailer

Effect of Relative Humidity on Nucleation and Nucleus Size

- Nucleus diameter decreased with increasing relative humidity
- Nucleation rate increased with increasing relative humidity
- At lower relative humidity, more molecules required for particle to be stable. (tendency for particles to evaporate)

Particle Concentration Variation With Particle Diameter at a Location 20"

- CMD shifted to the right from about 10 nm to 60 nm with condensation effects.
- Condensation essentially increased the nucleus radius.
- Particles with high diffusion coefficients diffused to large particles.
- Condensation effects are important near the stack (rapid dilution taking place).

Particle Concentration Variation with Diameter at Different Locations

CONCLUSIONS

• FLUENT k-ε model

- Predicted the plume dispersion that included the effects of turbulent mixing, convection, diffusion, and temperature variations, and species transport
- Agreed well with the concentration of CO₂ experimental data
- Relative concentration CO₂ dropped rapidly from 1 to 100 within a distance of 100 inches (due to small exhaust flow rate mixed with ambient)
- Center of the plume pointing downward (due to wake effects)
- Numerical model showed a significant recirculation (Dispersion coefficients are not constant in CFD model)
- CFD models could be used to predict the dispersion of pollutant, and to evaluate the impact of emission of pollutant.

CONCLUSIONS (continued)

- Nucleation rates in the formation of PM were calculated from the fuel sulfur content, F/A Ratio, and exhaust flow rate
- Nucleus diameter decreased by 30% from 10% to 90% relative humidity
- Number rate increased by a factor of 6 from 10% to 90% relative humidity
- •Condensation effects were very important near the exhaust stack where rapid dilution is taking place.
- •PM count median diameter increased from 10 to 60 nm with condensation effects.
- A good agreement was seen between the model predictions and the experimental data at four different locations.