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•Particulate Matter in Diesel Exhaust

Continuous Transformation: Nucleation, Coagulation, 

Condensation and Evaporation of Organics 

and Inorganics

• Fate of Condensable Organics and Inorganics

• Affected by Atmospheric Aging and Dilution of the Exhaust Stream

• Process of Changing Size Distribution-Nucleation, Coagulation

and Condensation

Particulate Matter FormationParticulate Matter Formation



ObjectivesObjectives
• To Predict the Nucleation,  Coagulation, and 

Dynamics of Particulate Matter Emissions 
in the Plume of a Class-8 Diesel-fueled Tractor 
Operating at 55 miles/hour.

To Predict the Structure of Plume, Including 
Variation of Temperature, Concentration 
and Dilution Ratio



Technical ApproachTechnical Approach
• Predicted CO2 concentration, dilution ratio, and temperature 

variations inside the plume using CFD models 

• Solved-using FLUENT Solver

• k-εεεε turbulent closure, eddy dissipation species transport, 

energy equation

• Included effect of nucleation, condensation, and coagulation of 

particulate matter formation, simultaneously

• With this method, the data required to solve these equations was

significantly reduced.  

• Particle concentration predicted based on the sulfur content of fuel,

F/A ratio and ambient conditions



Plume ModelsPlume Models

• Empirical Gaussian Models (Kaharabata et al., 2000, Hanna, 1984)

• Similarity Models (Obasaju and Robins, 1998, Huai and Li, 1993)

• Probability Density Function Models (PDF) (Reynolds, 2000)

• k-εεεε Models (Sharan and Yadav, 1998, Hwang and Chiang 1988)

• Statistical Models (Heinz and vanDop, 1999, Sawford, 1983)

• Large Eddy Simulation Models (LES) (Sykes et al., 1984)



Hydrocarbon/Sulfate Particles

Solid Carbonaceous/Ash Particles with Adsorbed
Hydrocarbon/Sulfate Layer

Sulfuric Acid Particles

Typical Structure of Engine Exhaust ParticlesTypical Structure of Engine Exhaust Particles

• Agglomerated solid carbonaceous particle,

volatile organic, sulfur compounds, ash

•Most of sulfur in the fuel

– oxidized to SO2, then

– oxidized to SO3

– leads to sulfuric acid and sulfate aerosol

• Metal compounds in fuel and lube oil

– lead to inorganic ash

(Seinfeld and Pandis, 1997)



(a)    Binary Vapor (b)     Molecular Clusters

(c)       Stable Nuclei
(d)      Particle Growth

Nucleation ProcessNucleation Process

• Homogeneous nucleation (Springer, 1978)
- In the absence of condensation nuclei
- Require large saturation ratio (S>1)

• Heterogeneous nucleation 
- Occurs on a foreign substance or surface,

such as an ion or a solid particle
• Binary homogeneous nucleation 

- Two or more vapor species 

(Baumgard and Johnson, 1996)



• Certain number of H2O and H2SO4 molecules collide
For critical cluster- sufficient energy to be stable

- Greater than critical size, grow 
(less, shrink)

- Rate of nucleation (H2SO4 hydrate 
(embryo) formation predicted by 
Reiss, 1950): 

(Grow past critical size)
• Higher nucleation rate occurs

at  higher relative humidity, 
and lower temperature

(a)    Binary Vapor (b)     Molecular Clusters

(c)       Stable Nuclei
(d)      Particle Growth

Nucleation Process (Cont’d)Nucleation Process (Cont’d)

)/exp( kTGCJ ∗∆−=

C is the frequency factor, k is the Boltzmann’s constant, T is the temperature
and ∆G is the free energy required to form an embryo



Coagulation ModelCoagulation Model
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• Integro-Differential Equation

• Simple Monodisperse Coagulation (Hinds, 1982)
- Particles are monodisperse, contact one another, grow slowly.

• Polydisperse Coagulation
- Governed by diffusion of particles to the surfaces of other particles

Augmentation Term Depletion Term



Techniques For Solving Coagulation Techniques For Solving Coagulation 
EquationsEquations

• J-space Transformation (Yom and Brock, 1984)
• Asymptotic solution (Pilinis and Seinfeld, 1987)
• Discrete method (Tambour and Seinfeld, 1980)
• Moment method (Williams and Loyalka, 1991; McGraw, 1997)
• Parametrized Representation (Whitby, 1985)
• Similarity solution (Friedlander and Wang, 1966)
• Direct simulation by Monte Carlo method

(Kruis et al., 2000; Maisels et al., 1999)

•• SemiSemi--implicit Finiteimplicit Finite--Difference Scheme (Jacobson Difference Scheme (Jacobson et alet al., 1994) ., 1994) 
•• Most GenericMost Generic
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COAGULATION NUCLEATION CONDENSATION

GOVERNING EQUATION

The evolution of PM size distribution due to coagulation, 
nucleation and condensation is represented by the discrete 

dynamical equation:

Ck= time dependent number concentration (No./cm3) of particles of 
volume vk (cm3)

β= coagulation kernel (cm3 No.-1 s-1) of two colliding particles
J(t) = Nucleation rate
 

  

 δδδδ = Kronecker delta with a value of 1 for the kth bin of volume vk; and 0 
otherwise

(Sienfeld and Pandis, 1997)



GOVERNING EQUATION
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To account for the simultaneous effects of nucleation, coagulation, 
and condensation the general formula for volume-conserving, semi-
implicit equation can be solved (Jacobson et al. , 1994; Kim et al., 
2001) to predict the concentration variation of PM in the exhaust 
plume of a diesel truck traveling at highway speeds:



90 ft (27.4m)

30ft
(9.1m)

60ft(18.3m)

28 ft (8.43m)

13ft
(4.0m)

Wind Deflector
(drag reducing air
shield)

SIMULATION CONDITIONSSIMULATION CONDITIONS

• Class-8 tractor heavy-duty diesel truck (330 hp) in a wind tunnel discretized using 
approx. 500,000 hexahedral and tetrahedral control volumes (cells).

• Steady state operation at 55 mph
• Exhaust exit velocity 29.8 m/s, Wind velocity 24.6 m/s
• Standard k-εεεε turbulence closure and finite rate chemistry/eddy dissipation
• Background concentration of CO2 (640 ppm), raw exhaust (60,000ppm)



Computational Grid of the Truck Inside the Wind  Tunnel

28 ft (8.43m)

13ft
(4.0m)

Wind Deflector

A B C D

Flow Direction

90 ft (27.4m)
60ft(18.3m)

30 ft
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Locations         



Filled Contours of Relative Concentration of CO2 
Inside the  Wind Tunnel

• Re-circulation region below wind deflector
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Relative Concentration (Rc) is defined as the ratio of the CO2 concentration 
at a given location (x,y,z) to the raw exhaust CO2 concentration (C0)



Contours of Relative Concentration of CO2 Inside the Tunnel 
on a Plane Passing Through Exhaust Pipe

• Center of plume downward
- wake effect

28 ft (8.43m)

Exhaust Pipe
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Relative Concentration of CO2 Along the Centerline of Plume

• Rc of CO2 dropped rapidly in 100"
-small flow rate of exhaust
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Velocity Vectors Showing Recirculation Near the Exhaust 
Pipe of the Tunnel

• Significant recirculation of the flow below wind deflector
• Dispersion coefficient not constant

15m/s



COCO22 Concentration Inside the Plume Perpendicular Concentration Inside the Plume Perpendicular 
to the Centerlineto the Centerline

•Asymmetry of plume - presence of wall
• Re-circulation region (undercarriage of flow)
• Symmetry of the plume- at large distances downstream
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Dilution Ratio of CODilution Ratio of CO22 along the Centerline of Plumealong the Centerline of Plume

•Increased rapidly
- higher flow rate of air



Temperature Along the Centerline of PlumeTemperature Along the Centerline of Plume

• Rapidly decreased
-dilution increased
- 100 inches  (75 oF)
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Relative Concentration of CO2 near the Moving Gantry 
inside Wind Tunnel

• Geometry was re-discretized to account for
the effect of gantry



Variation of CO2 Concentration inside the Plume
Perpendicular to the Centerline near Moving Gantry

• Better agreement with experimental data than simulation
without the gantry at 20 inches downstream from stack

• Will not affect significantly far away due to high dilution ratio
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COMPUTATIONAL GRID OF TRACTOR-TRAILER

• Traditionally, the trucks are accompanied by the trailers.
• Tractor-trailer recreated using FLUENT software.
• Same velocity and temperature boundary conditions.



Contours of Relative Concentration of CO2 on Tractor-Trailer

• Longer plume for the trailer configuration
• Plume remained attached to the body.

(mix with ambient slowly)
• Plume decayed slowly in the presence of trailer.



Effect of Relative Humidity on Nucleation and Nucleus Size
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• Nucleus diameter decreased with increasing relative humidity
• Nucleation rate increased with increasing relative humidity
• At lower relative humidity, more molecules required for particle to be stable.

(tendency for particles to evaporate)



Particle Concentration Variation With Particle Diameter
at a Location 20”

• CMD shifted to the right from about 10 nm to 60 nm with condensation effects.
• Condensation essentially increased the nucleus radius.
• Particles with high diffusion coefficients diffused to large particles.
• Condensation effects are important near the stack (rapid dilution taking place).
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Particle Concentration Variation with Diameter 
at Different Locations 
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CONCLUSIONS
• FLUENT k-εεεε 

  

 model
• Predicted the plume dispersion that included the effects of 

turbulent mixing, convection, diffusion, and temperature  
variations, and species transport

• Agreed well with the concentration of CO2 experimental data
• Relative concentration CO2 dropped rapidly from 1 to 100 within

a distance of 100 inches (due to small exhaust flow rate mixed 
with ambient)

• Center of the plume pointing downward (due to wake effects)
• Numerical model showed a significant recirculation 

(Dispersion coefficients are not constant in CFD model)
• CFD models could be used to predict the dispersion of pollutant, and 

to evaluate the impact of emission of pollutant.



CONCLUSIONS (continued)

• Nucleation rates in the formation of PM were calculated from the
fuel sulfur content, F/A Ratio, and exhaust flow rate

• Nucleus diameter decreased by 30% from 10% to 90% relative humidity
• Number rate increased by a factor of 6 from 10% to 90% relative

humidity
•Condensation effects were very important near the exhaust stack 

where rapid dilution is taking place.
•PM count median diameter increased from 10 to 60 nm with 

condensation effects.
• A good agreement was seen between the model predictions and the

experimental data at four different locations.




