6th ETH CONFERENCE ON NANOPARTICLE MEASUREMENT Zurich Aug. 19-21, 2001

AN UPDATE ON THE DIESEL EXHAUST AFTERTREATMENT (DEXA) CLUSTER OF THE EU GROWTH PROGRAMME

A. G. Konstandopoulos^{*}, G. Boretto^{**}, P. Prenninger^{***} & W. Brandstaetter^{****}

*APT Lab, CERTH/CPERI, Thermi, Greece ** Centro Ricerche Fiat, Orbassano, Italy *** AVL List, Graz, Austria ****CDL-ACT, U. Leoben, Austria

Problem addressed

The present cluster of projects is aiming at providing a complete and integrated approach at the European level, on passenger vehicle diesel exhaust aftertreatment, with emphasis on particulate emissions control for Euro IV and beyond, emission standards.

DEXA CLUSTER (2001 – 2005) A systems approach to diesel emission control

DEXA CLUSTER PARTNERS

The cluster consists of 4 projects involving 15 partners from 7 different European countries with long-term R&D experience in Diesel exhaust aftertreatment and engine technologies.

DEXA Cluster Projects

The DEXA cluster focuses on 3 aspects of diesel particulate emissions:

- ¥ component technology integration in two demonstrator vehicles (Project ART-DEXA)
- ¥ system design and simulation tools (Projects SYLOC-DEXA, STYFF-DEXA)
- ¥ quality assessment and measurements of nanoparticles (Project PSICO-DEXA)

CLUSTER MANAGEMENT

DURATION:1/2/2000-31/1/2003

DURATION:1/2/2000-31/1/2003

STYFF-DEXA DURATION:1/5/2002-31/04/2005 Coordinator: Gianmarco Boretto CR FIAT

Coordinator: Peter Prenninger AVL List GmbH

Coordinator: Wilhelm Branstaetter U. LEOBEN

DURATION:1/1/2000-31/12/2002

Cluster Coordinator: Athanasios G. Konstandopoulos CERTH/CPERI

DEXA CLUSTER STRUCTURE -1

DEXA CLUSTER STRUCTURE-2

ART-DEXA Summary

¥ Basic Trap Selection and Material Screening

- ¥ Different trap concepts have been investigated both internal and external to the project
- ¥ Three promising component technologies have been selected for further development for demonstrator vehicles

¥ Active Regeneration Measures Screening

¥ Active engine management leading to regeneration potential and its effect on fuel consumption and driveability has been studied

¥ Trap and Control System Manufacturing

- ¥ Filter operation, diagnostics and control algorithms have been developed and programmed
- ¥ Control system manufacturing is achieved

SYLOC-DEXA Summary

¥ Submodel procurement is completed

- ¥ Filters
- ¥ Catalysts

¥ Database of component technologies is in place

- ¥ Exhaust system layouts
- ¥ Filter materials and configurations
- ¥ Catalysts

¥ Computational interfaces/platforms defined

- ¥ Engine cycle simulation
- ¥ Exhaust pipe CFD
- ¥ Filter/Catalyst parameters

¥ Validation Data collection in progress

- ¥ Emission control components procured and tested
- ¥ System lay-out for vehicle demonstrators completed

PARTICULATE EMISSION CONTROL SYSTEMS: EXPERIMENT AND SIMULATION

- ¥ Kick-off was in July 2002
- Emphasis is on novel computational techniques for soot aggregate transport and reaction in porous media in a parallel computing environment
- ¥ Particle Emission Control as well as Noise-Abatement is studied employing porous cellular structures
- **¥** Results will be incorporated into the SYLOC-DEXA toolkit

PSICO-DEXA Summary

¥ Size measurement techniques

Y Mobility techniques define the standard and real time performance has been demonstrated (TDMPS). New analysis to connect number and mass based distributions for fractal particles

¥ Multiwavelength optical techniques are promising

¥ Composition measurement techniques

¥ Baseline/Post-catalyst/Post filter changes of particles studied with emphasis on sulfate formation

 \mathbbmatrix Neutron activated Gamma-ray spectroscopy for trace elements on particles is demonstrated

¥ Joint size-composition measurement techniques

 $\ensuremath{\mathbbmath{\mathbb{X}}}$ Thermophoretic Sampling/AEM, Size specific photoelectric yield, and size specific gamma-ray spectroscopy are developed and applied

¥ Assessment of Engine Management & Aftertreatment Effects

- $\ensuremath{\mathbbmath{\mathbbmath{\mathbb{Y}}}}$ Strategies and aftertreatment technologies based on ART-DEXA
- $\ensuremath{\mathbbmath{\mathbbmath{\mathbb{Y}}}}$ Assessment of technologies under normal and regeneration operation

DEXA CLUSTER DELIVERABLES (March 2003)

¥ ART-DEXA

¥ Two optimized vehicle demonstrators with advanced particulate emission control

¥ SYLOC-DEXA

¥ Exhaust aftertreatment system simulator tool and its application for the optimization of demonstrator system layout

¥ PSICO-DEXA

¥ Database of engine management and emission control technology effects on particle size & composition

¥ STYFF-DEXA

¥ Validated computational engine for reconstruction of porous cellular structures

UNIVERSAL LOGNORMAL SIZE DISTRIBUTION-1

1.9L Turbo Diesel DI engine with conventional fuel injection

UNIVERSAL LOGNORMAL SIZE DISTRIBUTION-2 1.9L Turbo Diesel DI engine with common rail fuel injection

UNIVERSAL LOGNORMAL SIZE DISTRIBUTION Comparison to Literature

DMA-PAS/DC IN SERIES SETUP FOR SIZE RESOLVED COMPOSITION MEASUREMENT

FUCHS SURFACE OF A DIESEL AGGREGATE

Fuchs(x)
$$| \phi x^2 1.657 \frac{\operatorname{Kn}(x)}{\operatorname{SCF}(x)} | \begin{bmatrix} \phi x^2 & \operatorname{Kn}(x) \Downarrow & \leftarrow \\ 1.657 \operatorname{Kn}(x) \phi x^2 \Im x & \operatorname{Kn}(x) \swarrow & 0 \end{bmatrix}$$

$$\operatorname{Kn}(x) \mid \frac{2\varsigma}{x} \quad \varsigma \mid \tau \sqrt{\frac{\phi MW}{2RT}} \quad \operatorname{SCF}(x) \mid 12 \operatorname{Kn}(x)(1.25720.4e^{4\frac{0.4}{\operatorname{Kn}(x)}})$$

Mob. Diam.	Mob. surface	Number of primary particles in aggregate	Fuchs surface	Fractal aggregate surface	Fuchs fractal aggregate surface
D _m	ϕD_m^2	$N_{A} = k (D / d_{a})^{1.82}$	Fuchs(D _m)	$N_A \phi d_0^2$	N_A Fuchs(d ₀)

** Based on mass vs. mobility measurements of Kittelson & McMurry (2002)

DEXA CLUSTER

"SURFACE" DEFINITIONS OF A DIESEL AGGREGATE

Example calculation for

$$N_A \mid k_m (\frac{2R_m}{d_0})^{D_f} \quad k_m \mid 3.9 \quad D_f \mid 1.82$$

PAS/Total Fuchs Fractal Area For Different Engine Loads

BEYOND THE DEXA-CLUSTER

In response to the EU CALL FOR Expressions of Interest (6/02) the DEXA CLUSTER Partners have formed the

ECONET Network of Excellence to address the

NEEDS FOR FUTURE EMISSION CONTROL SYSTEMS

↓ Compactness (size reduction by > 50%)

↓ Cost (target to be defined in €/kW of engine power)

 \downarrow Flexibility and tolerance to new fuels and engines

