Abstract for the 6th ETH Nanoparticle Conference Comparison of the soot formation inside the cylinder and the soot particle emission in the exhaust of a direct injection spark ignition engine

Authors: K. Schänzlin⁺, K. Przybilla^{*}, Th. Lutz⁺, K. Boulouchos⁺ ^{*}Laboratorium für Festkörperphysik, ETH Zürich ^{*}Laboratorium für Verbrennungsmotoren und Verbrennungsforschung, ETH Zürich

Since 1997 Direct Injection Spark Ignition (DISI) engines are on the European Market. Their advantage is a lower specific fuel consumption and therefore a reduction of CO_2 -emissions, which are mainly responsible for the greenhouse effect. But from our investigations of the combustion inside the cylinder [1], we found, that the combustion takes partly place in a diffusion flame or in a partly rich premixed flame. Both generate a higher amount of soot than usually expected from gasoline engines.

In the presentation, investigations inside the cylinder by means of the two-colormethod [2] are shown. With this measurement technique, it is possible to obtain information about the soot content by looking at the value of the so called KL-factor [3]. K is an absorption coefficient, which is proprtional to the number density of soot particles, while L is a geometric thickness of the flame along the optical axis. This KLfactor is used in the empirical correlation of Hottel and Broughton and it is proportional to the soot concentration [3].

Additionally, exhaust emission investigations have been performed as there are gravimetry, coulometry, photoelectric aerosol sensor (PAS), diffusion charger (DC) and scanning mobility particle sizer (SMPS).

From all investigations, it ist clear, that stratified DISI engines emit higher soot concentrations than homogeneous charge gasoline engines, even if the last run at rich conditions. These investigations have shown that there is a correlation between the maximum and the overall soot concentration inside the cylinder on one hand and the exhaust pipe emissions as well on the other. Also, the well known relationship from Diesel engines concerning the correlation between PAS and EC appears to be valid for DISI engines.

[1] K. Schänzlin: Charakterisierung der Gemischbildung und Verbrennung in einem direkteingespritzten Ottomotor mit strahlgeführtem Brennverfahren, Dissertation ETH Zürich 2002 (eingereicht).

[2] R. Schubiger: Untersuchungen zur Russbildung und –oxidation in der dieselmotorischen Verbrennung: Thermodynamische Kenngrössen, Verbrennungsanalyse und Mehrfarbenendoskopie. Dissertation ETH Zürich Nr. 14445, 2001.

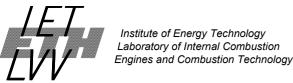
[3] H. Zhao, N. Ladomatos: Optical Diagnostics for Soot and Temperature Measurement in Diesel Engines; Prog. Energy Combust. Sci. Vol. 24 pp. 221-255, 1998.

6th Nanoparticle Conference ETH Zurich

Comparison of the soot formation inside the cylinder and the soot particle emission in the exhaust of a direct injection spark ignition engine

K. Schänzlin°, K. Przybilla *, K. Boulouchos°, Th. Lutz°, °I.C. Engine Lab, ETH Zurich *Solid State Physics Lab, ETH Zurich

K. Schänzlin LVV ETH Zürich

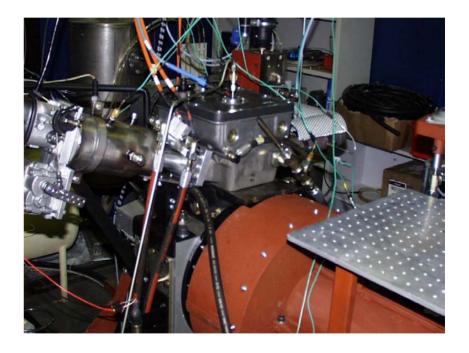

Motivation

- Particle-measurements on gasoline engines are seldomly reported in literature, although most of the passenger cars use gasoline engines
- Gasoline direct injection engines burn to a certain extent under locally fuel-rich conditions during stratification
- Conventional gasoline engines burn globally fuel-rich during
 full load driving
- It is known, that there is a certain soot level if combustion takes place with a diffusion flame or under rich premixed
- In diesel engines, most of the soot generated during combustion can be oxidized – is this also the case during stratified gasoline combustion?

Content

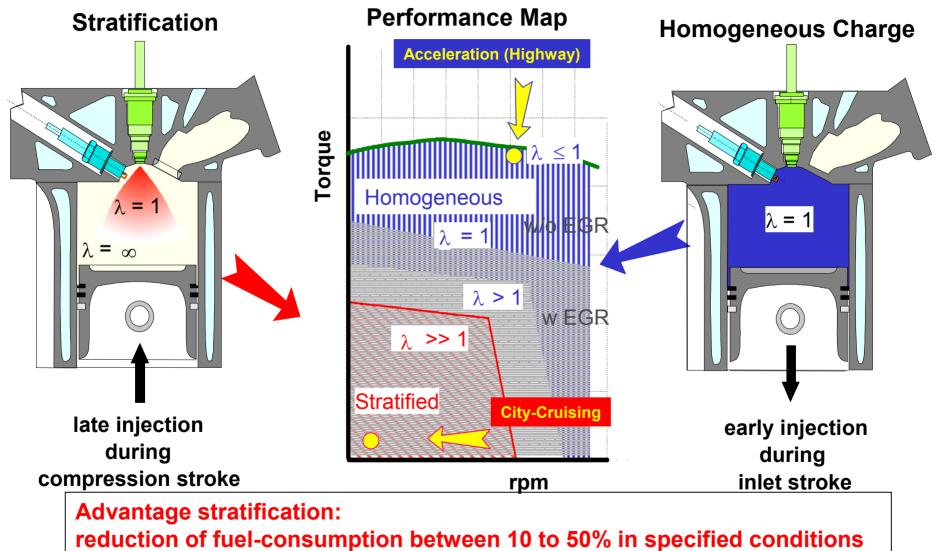
- Engine Specification
- Gasoline Direct Injection Strategies
- Measurement Techniques
- Results
 - Comparison Stratified Charge Homogeneous Charge
 - Comparison In-Cylinder Exhaust Pipe Measurements
- Conclusions and Outlook

Engine Specification


One-Cylinder Research Engine

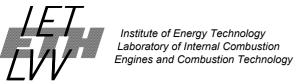
Gasoline Direct Injection

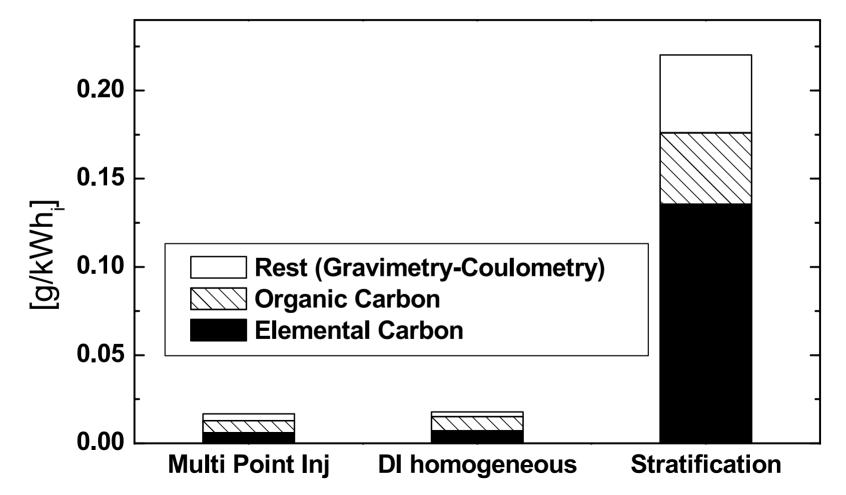
Jet Guided Strategy


Hollow Cone Spray

Stroke:86.6 mmBore:89.9 mmCompression Ratio:10

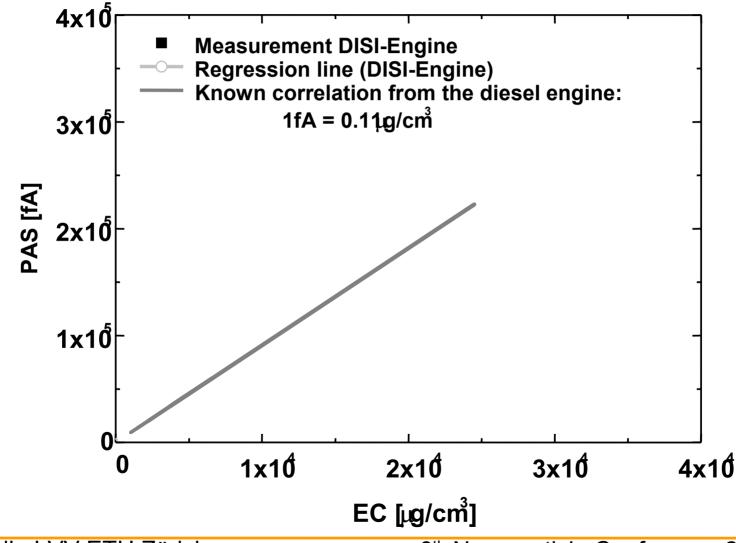
Strategies DISI – Engine (Schematical View)



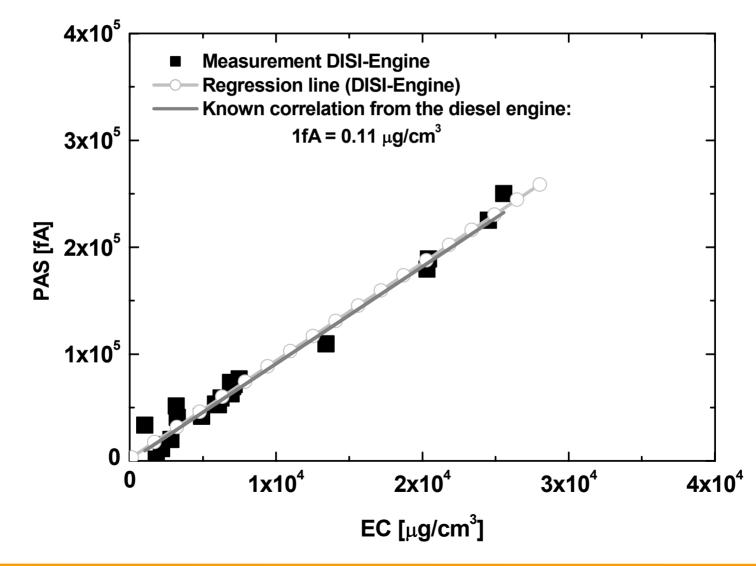

Measurement Equipment

- In-Cylinder Measurements:
 - Two-Color-Method
 - \Rightarrow Radiation Temperature
 - \Rightarrow KL-Factor \propto Soot Concentration

- Exhaust Pipe Measurements:
 - Gravimetry
 - Coulometry
 - Photoelectric Aerosol Sensor (PAS)
 - Diffusion Charger (DC)
 - Scanning Mobility Particle Sizer (SMPS)

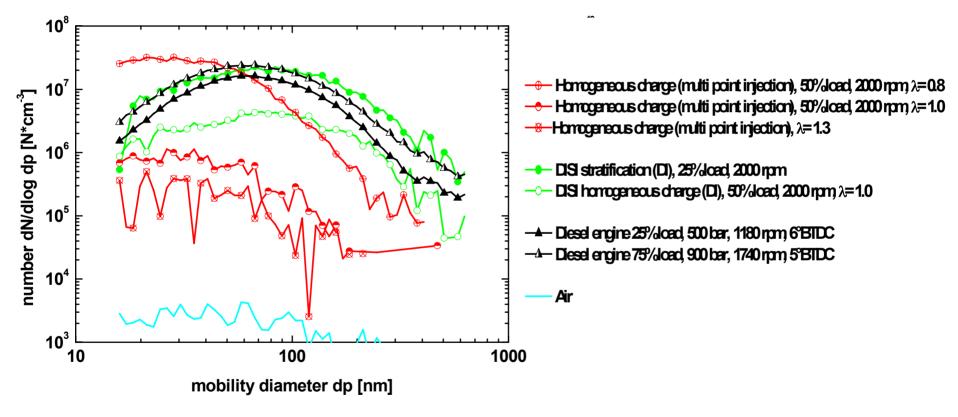

Comparison Stratified Charge – Homogeneous Charge Gravimetry and Coulometry

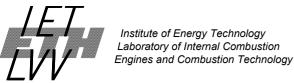
K. Schänzlin LVV ETH Zürich


Stratification: Comparison PAS - EC

K. Schänzlin LVV ETH Zürich

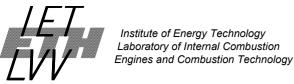
Stratification: Comparison PAS - EC


K. Schänzlin LVV ETH Zürich

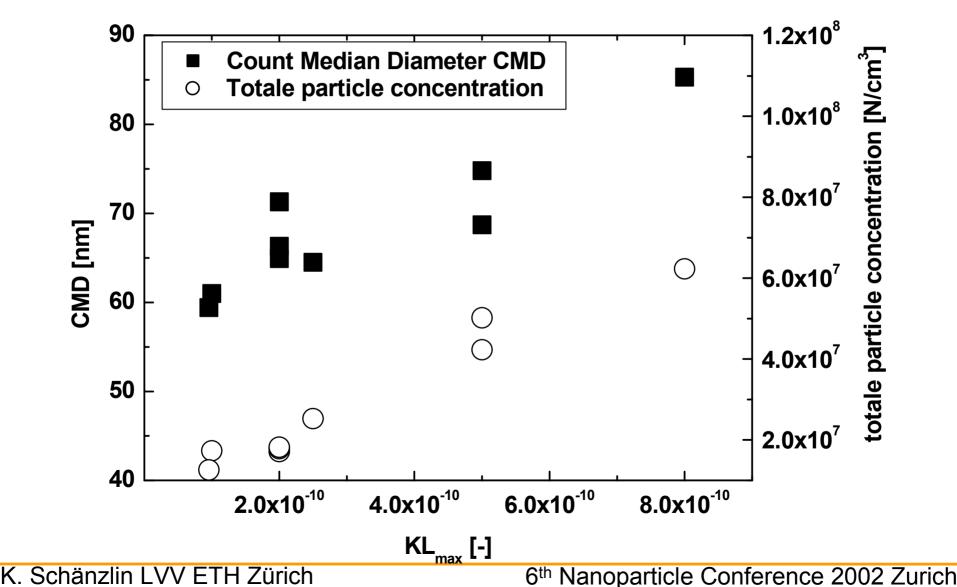

Stratified Charge vs.

Homogeneous Charge:

SMPS

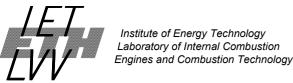


K. Schänzlin LVV ETH Zürich



Comparison Gravimetry with In-Cylinder-Measurements

Comparison SMPS with In-Cylinder Measurements



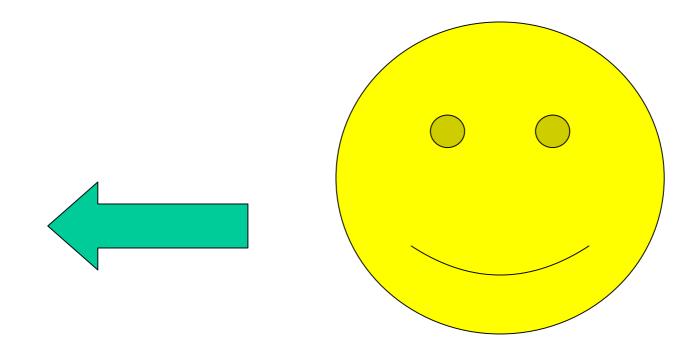
Typical SMPS Results in Comparison to In-Cylinder-Results Comparison to Literature

Running condition	Totale particle con- centration [N/cm³]	Literature [N/cm ³]	CMD [nm]	Literature CMD [nm]	KL _{max} [-]	∫КL [-]
Multi point injection homogen. charge	5.65*10⁵ N/cm³	10⁵ N/cm³ to 10⁴ N/cm³	27.4nm	between 20nm and 38nm (dependent on load)	-	-
Direct injection homogen. charge	2.10*10 ⁶ N/cm ³	10 ⁷ -10 ⁸ N/cm ³	66.3nm	88nm	10 ⁻¹³ bis 10 ⁻ 14	-
Direct injection stratification	4.23*10 ⁷ N/cm ³	10 ⁸ N/cm ⁻³	68.7nm	68nm to 81nm	4*10 ⁻¹⁰	10 ⁻⁸
Common- rail-diesel engine	10 ⁷ N/cm³ \/\/ ⊑TH-7 ü	10 ⁸ p/cm ³ für light- duty-diesel engine w/o after	55nm to 70nm	60nm to 120nm	4*10 ⁻⁹	10 ⁻⁷

K. Schänzlin LVV ETH Zürich

Conclusions and Outlook

- During stratification, we observe a higher soot level as compared to homogeneous charge
- There is a good correlation between in-cylinder-soot measurements and exhaust pipe investigations
- In diesel engines, soot oxidation appears to be more effective than in gasoline direct injection engines
- Gasoline direct injection technique can still be seen as beeing in its infancy
 ⇒ work has to be and can be done to improve soot emissions


K. Schänzlin LVV ETH Zürich

Acknowledgements

- KTI Swiss Federal Comission of Technology and Innovation
- EMPA Swiss Federal Laboratory for Materials Testing and Research
- BFE Swiss Office of Energy
- BUWAL Swiss Agency for Environment, Forests
 and Landscapes
- FVV German Association for Engine Combustion Research

K. Schänzlin LVV ETH Zürich

