PM Emissions from Natural Gas and Catalyzed Trap-Equipped Heavy-Duty Diesel Vehicles – Chemical Characteristics and Size Distribution

Mridul Gautam

Professor

Department of Mechanical and Aerospace Engineering West Virginia University

Test Vehicles/Engines

Participating Fleets	Vehicle/ Engine Type	Engine Rating (Hp)	Vehicles retrofitted with CRDPF	Mileage Accumulated with CRDPF (9/2000)
San Diego School District	School Bus/ Navistar 530E	275	5	22 – 27,000
ARCO Distribution	Fuel Truck/ Cummins M11	350	5	70 – 110,000
Ralphs Grocery	Grocery Truck/DDC Ser 60	430	5	40 – 60,000
LAMTA	Transit Bus/DDC Ser 50	275	2	15 – 20,000

Test Matrix

Vehicle	Fuel	DPF Type
San Diego School Bus	CARB, ECD,	NONE
	ECD-1, FT	DPX
LA MTA	ECD-1, CARB	NONE
	ECD, ECD-1	CRT
	CNG (2 Vehicles: MY2000 and MY2001)	NONE
Ralphs Grocery	CARB, ECD-1	NONE
	ECD, ECD-1	CRT

TESTING AN URBAN TRANSIT BUS

Chemical Characterization

- Particulate Matter
 - Concentration and Size Distribution
 - Mass TPM, PM₁₀, PM_{2.5}
- Volatile Organic Compounds
 - Low molecular weight alkanes and olefins $(C_2 C_5)$
 - Low molecular weight aromatics (BTEX)
- Elemental & Organic Carbon
- PAHs and n-PAHs
- Elemental Compounds
- Ionic Species
- Carbonyls
- Dioxins and Furans
- Bioassays

Fuel Analysis

Property	CARB	ECD	<u>ECD-1</u>
Cetane Number	54.1	64.7	51.3
Sulfur, ppm	121	7.4	13.1
SFC Aromatics Total, vol%	22.5	10.9	23.8
PNA, wt%	4.1	0.9	2.8

Sampling System

Ralphs Grocery Site PM Background Comparison (Mass)

Particle Sizing Cart

Diesel (M-11) and LNG (L-10 280G) Fueled Heavy-duty Transit Buses (DART)

1999 Study Comparison of Particle Size Distributions LNG-fueled and Diesel-fueled Transit Buses

Diesel (M-11) and LNG (L-10 280G) Fueled Transit Buses: Number Cumulative Concentrations (DART)

Diesel (M-11) and LNG (L-10 280G) Fueled Transit Buses: Mass Cumulative Concentrations (DART)

Dp (nm)

Source of PM

- Lube oil contribution to exhaust PM emissions is considerably more significant now than ever before.
- The basic design of current natural gas engines contributes to less than desirable oil consumption. Attention needs to be focused upon cylinder materials, design of ring packs, valve stem seals, etc., to minimize oil consumption.
- Hence, oil formulations need to be modified to counter the need for higher oil consumption in natural gas engines.

TUNNEL BACKGROUND

Ralph Grocery Tractor Steady-State 40 mph Operation

LA County MTA Transit Bus Diesel / CNG 1 / CNG 2 Steady-State 40 mph Operation

AFTERWARM-UP AT 40 MPH TRANSIT BUS FUEL: ECD1

EXHAUST AFTER-TREATMENT: JOHNSON-MATTHEY

EC/OC

Elemental Analysis: Lubricant Oil Contribution

Engine Wear Contribution

Inorganic Ionic Species

Summary

- Ionic species emissions were very low, regardless of fuel/filter/vehicle combination.
- Overall, the lowest EC/OC emissions were recorded with the DPF equipped vehicles and the CNG transit buses.
- Without the DPF, ~85% of the sum of the ionic species and EC/OC is elemental carbon.
- The organic carbon is ~90% of the sum of the ionic species and EC/OC for the CNG transit buses.

2-Ring PAH

4-Ring PAH

West Virginia University, Morgantown,WV 26506

2-Ring n-PAH

3-Ring n-PAH

4-Ring n-PAH

VOC's

(Grouped by Compound Classes)

Morgantown,WV 26506

Benzene

West Virginia University, Morgantown,WV 26506

BTEX

West Virginia University, Morgantown,WV 26506

Carbonyl Compounds (Air Toxics)

Formaldehyde	Acetaldehyde	
Acetone	Acrolein	
Propionaldehyde	Croton	
Methyl ethyl Ketone (MEK)	Methylacrolein	
Butanal	Benzaldehyde	
Glyoxal	Valal	
Tolual	Hexanal	

Carbonyls

West Virginia University, Morgantown,WV 26506

Summary

- Controlling PM emissions to the 0.01 g/bhp-hr (2007 standards) is not a problem.
- The problem lies in accurately measuring the low levels of PM emissions (approx. 2 μ g/m³.
- Even measurement may not be a problem, but the current (outdated) definition of PM certainly is. Hence, the definition of PM needs to be modified.
- Also, the composition of PM from MY2007 engines clearly indicates that the definition of PM should be modified.
- Lube oil contribution to exhaust emissions is considerably more significant now than ever before.
- Natural gas engine designers need to focus more on cylinder materials, design of ring packs, valve stem seals, etc., to minimize oil consumption.
- Oil formulations need to be modified to counter the need for higher oil consumption in natural gas engines.