Multi-angle absorption photometry - a new method for the measurement of aerosol light absorption and atmospheric black carbon

A. Petzold¹, M. Schönlinner², and E. Weingartner³

¹ Institut für Physik der Atmosphäre, DLR Oberpfaffenhofen, D-82234 Wessling, Germany
² ESM Andersen Instruments, Frauenauracher Str. 96, D-91056 Erlangen, Germany

³ Labor für Atmosphärenchemie, Paul Scherrer Institut, CH-5232 Villigen PSI

funded by Deutsche Bundesstiftung Umwelt, contract no. 12626

Contact: Andreas Petzold Institut für Physik der Atmosphäre, DLR Oberpfaffenhofen, 82234 Wessling, Germany Phone: +49 (0) 8153 28 2592 E-mail: andreas.petzold@dlr.de WWW: http://www.op.dlr.de/ipa/

Basic Method Characteristics

Determination of the aerosol light absorption coefficient from a simultaneous measurement of radiation passing through and scattered back from a particle-loaded fibre filter.

Angular-resolved detection of the back scattered radiation contributes additional information on the light-scattering fraction of the deposited aerosol.

Analysis of the absorbance of the particle-loaded filter via a two-stream approximation radiative transfer scheme.

Reduction of the cross-sensitivity of filter-based absorption measurement methods to light-scattering aerosol components and filter loading effects.

Optical Sensor Unit

Set-up of the multi-angle absorption photometer sensor: $\theta_0 = 0^\circ, \ \theta_1 = 130^\circ, \ \theta_2 = 165^\circ$

Multi-angle absorption photometer sensor unit for continuous aerosol sampling.

Method response in terms of measured absorption coefficient b_{abs} vs. in-situ reference value $b_{ext} - b_{scat}$ at $\lambda = 660$ nm to a kerosene soot / ammonium sulphate mixture of b_{scat} / $b_{ext} = 1$ (white aerosol) to 0.2 (black aerosol)

- absorbance mode = multi-angle absorption photometry,
- transmittance mode = conventional filter transmission measurement;

no dependence of measured b_{abs} on b_{scat} / b_{ext} for the absorbance mode.

Method calibration studies:

left: right: BC mass in urban aerosol, reference method is VDI 2465, part 1; absorption coefficient b_{abs} of a kerosene soot- ammonium sulphate mixture, reference method is b_{ext} - b_{scat} at λ = 660 nm.

 b_{abs} (multi-angle absorption photometry), Mm^{-1}

 $b_{abs}~(\lambda = 0.67~\mu m)$ measured at the high-alpine site Jungfraujoch using multi-angle absorption photometry and an Aethalometer (transmission method) which is corrected for filter multiple-scattering effects; improved b_{abs} measurement by multi-angle absorption photometry, Aethalometer overestimates b $_{abs}~(m = 1.38 \pm 0.02)$ compared to multi-angle absorption photometry .

Summary

Multi-angle absorption photometry is a filter-based aerosol absorption measurement method which compensates effects of filter loading and aerosol light scattering on the absorption coefficient measurement. Method features are:

- strong correlation to in situ methods (extinction - scattering, photoacoustic spectroscopy);
- reduced cross-sensitivity to light-scattering components;
- ▷ no influence of filter loading on the measurement;
- aerosol absorption coefficient equals reference value as determined by in situ methods;
- simple in operation, suitable for long-term monitoring;
- robust determination of black carbon mass concentration;
- detection limit is 7×10^{-8} m⁻¹ (approx. 10 ng BC m⁻³) for 1 m³ of sampling volume.

See http://www.esm-online.de/andersen/product/ CARUSSO-Brochure.pdf for more information.