Overview of the EU DG TREN Particulates Project on the Characterisation of Exhaust Particulate Emissions from Road Vehicles

Zissis Samaras

Lab of Applied Thermodynamics, Aristotle University GR-541 24 Thessaloniki Greece

In the framework of *Particulates*, a specific particle measurement protocol was developed, which attempts to address as many needs for a multidimensional characterisation of particulates as possible. A small portion of the exhaust gas enters the primary dilutor and is diluted with dehumidified and filtered air. The primary dilution ratio is adjusted to a nominal ratio of 12:1 and is achieved with rapid turbulent mixing (time constant ~1 ms). A constant dilution air temperature is forced at 32° C. The selection of the dilution conditions was rather based on the need to define repeatable and relatively stable conditions, in particular as regards production of 'secondary'' (nano-) particle production. The diluted exhaust gas stream is divided into two branches, called "wet" and "dry" branch by convention. In the wet branch, after primary dilution, the aerosol is allowed to stabilise for a couple of seconds before analysis, necessary to equilibrate the concentration and homogenise the diluted sample.

In the wet branch a CPC is used to record total particle concentration above 10 nm. Over steady state tests an SMPS is used to scan particle concentration in the range 10 nm -1 µm mobility diameter. The current produced by a unipolar corona-type charger is used to monitor the diffusion-active particle surface area. The rest of the high flow of the wet branch is led to high volume flow impactor, used to give information about mass size distribution. In the dry branch, non-volatile (solid) aerosol properties are separated by means of a Thermodenuder. Solid particle size distribution and number concentration in the range 30 nm -1 µm aerodynamic diameter are monitored downstream of the thermodenuder with an ELPI. Also, the legislated CVS method is used to collect mass of particles on teflon-coated filters.

A large matrix of vehicle technologies and fuel qualities have been measured with this protocol. The results are compared and evaluated on the basis of total particle mass and VOF/NVOF split, total particle number, total active surface equivalent, size segregated solid particle number, mass weighted size distribution and number weighted size distribution. Some of the above are measured in near real time and then integrated over a cycle, some other are measured directly as average values over a cycle, while one is measured over steady states only. As regards the sizes: basically the measurements focus to sizes below 1 micron and emphasis is put on nano particles, i.e. in the range of 10 to 50 nanos. Mass data are also collected from 1 to 10 microns. In summary it is attempted to provide size distribution (continuous) up to \sim 1 micron and then data for 1 - 2,5 and 2,5 to 10 microns. Conventional emission factor expressions are used, such per km, per kWh, but also per hour, per cubic centimeter exhaust etc.

Zissis Samaras

Laboratory of Applied Thermodynamics

Aristotle University Thessaloniki

7th International ETH Conference on Combustion Generated Particles

Zurich 18-08-2003

Overview of the EU DG TREN Particulates Project on the

Characterisation of Exhaust Particulate Emissions from Road Vehicles

A 5 FP European research programme sponsored by the Directorate General on TRansport and ENergy

The "PARTICULATES"

project team

7th International ETH Conference on Combustion Generated Particles Zurich 18-08-2003

Partners: Aristotle University (GR) – Coord. Concawe (B) Volvo (S) **Tampere University (FIN)** EMPA (CH) AEAT (UK) IFP (F) AVL (AUT) AVL- MTC (S) Graz University (AUT) Aachen University (D) **JRC Peten (NL)** VTT (FIN) Ford Forschungszentrum Aachen (D)

Associate partners: Renault (F) INRETS (F) Dekati (FIN) Stockholm Univ. (S) Athens Uni. (GR) TRL (UK) INERIS (F) LWA (UK)

Consultants D. Kittelson G. Reischl

The "PARTICULATES"

relevant info

7th International ETH Conference on Combustion Generated Particles Zurich 18-08-2003 Project started April 2000

- > 3,5-year duration (ends October 2003)
- ➤ Total cost: 3,6 M€, EU contribution: 2,5 M€ (70%)
- http://vergina.eng.auth.gr/mech/lat/parti culates

The "PARTICULATES"

targets

- Definition of the *exhaust aerosol* properties which will be examined and evaluation of available measurement instruments and techniques
- Development and introduction of a harmonised protocol for the definition of exhaust aerosol sampling conditions
- Examination of the *particulate emissions* of current light duty vehicles and heavy duty engines
- Investigation of the influence of *engine* technology, fuel quality and aftertreatment on particulate emissions

Status and outlook

- A commonly agreed test procedure was developed, addressing sampling and dilution conditions
- A test protocol was developed based on the selected instruments
- The test conditions were evaluated with a round robin exercise
- A car chasing study was conducted to check the relevance of the test protocol
- Testing of a large number of vehicles and fuels is completed
- Collection of all test results is centrally conducted using common formats and methodologies
- Final results are expected October 2003

Test set up for LDV - Shell

Zurich 18-08-2003

Test set up for HDV - AVL

Conference on Combustion Generated Particles Zurich 18-08-2003

Validation of the Particulates Dilution Protocol

On-road chasing of exhaust plume

Conducted by Ford

7th International ETH Conference on Combustion Generated Particles Zurich 18-08-2003

<u>Test vehicle:</u> 1.8 | Diesel speed, fuel consumption exhaust temperatures

Ford Mobile Lab: SMPS, CPC, NOx, CO, T and RH

Test track:

high speed oval, 4 km/lap

DR fluctuation when sampling at the end of a 5 m tailpipe with a ceramic DPF installed instead of the muffler

Calculated penetration as a function of particle size for transfer lines to different instruments

7th International ETH Conference on Combustion Generated Particles Zurich 18-08-2003

The low penetration for the ELPI is due to TD losses

LDV

- ➢ NEDC
- > CADC
- Steady Speeds
 (50, 90, 120 km/h)

HDV

➤ ECE R49

- ➤ ESC
- ➤ ETC

Some also conduct:

- > Aftertreatment tests
- More transient cycles
- More steady state tests

Sampling: Cycles

CONCAWE LD Programme

7th International ETH Conference on Combustion Generated Particles Zurich 18-08-2003

- Daily Test Schedule
 - Cold NEDC (1180 s)
 - Hot NEDC (1180 s)
 - Artemis Urban (993 s)
 - Artemis Road (1082 s)
 - Artemis Motorway 130 km/h (1068 s)
 - 120 km/h Road-Load (600 s)
 - 50 km/h High-Load (600 s)
 - 50 km/h Road-Load (600 s)
 - 50 km/h Road-Load with High Dilution [W1] (600 s)
 - Fuel Change
 - Pre-condition

Monday – Data processing and Pre-condition Tuesday to Friday – Full Test Days

Diesel	Fuel
Analy	ses

Fuel Code		D-1 to D-4	D-5	D6	D7
Fuel Description	Units	Sulphur	Swedish	EN590: pre-	5% RME
		Matrix	Class 1	2000	Blend
Cetane Number		54.0	55.1		54.5
Density	kg/m ³	845	810	856	846
T50	°C	282	226	279	284
T95	°C	358	282	366	358
FBP	°C	368	294	373	367
Flash point	°C	68	66	71	
CFPP	°C	-33	-39	- 14	- 33
KV @ 40 C	mm²/s	3.04	1.79	3.15	3.08
Poly-aromatics	% m/m	4.3	<0.1	7.3	5.0
Mono-aromatics	% m/m	14.1	1.7	31.0	12.9
Carbon	% m/m	86.8	85.9	87.1	86.3
Hydrogen	% m/m	13.2	14.4	12.9	13.1
LHV	MJ/kg	42.8	43.9	42.4	42.5
Ash	% m/m	0	<0.01	<0.01	<0.01
Water	mg/kg	36	35	50	40
Oxidation Stability	g/m ³	<1	10	0.2	0.3
HFRR	μm	375	386	389	237
FAME		Nil	Nil	Nil	5% v/v
Sulphur	mg/kg		3	307	7
D-1	pre-1996	1550			
D-2	2000	280			
D-3	50 ppm S	38			
D-4	10 ppm S	8			

Gasoline Analyses

Fuel Code		G-1	G-2	G-3
Fuel	Units	EN 228:	EN 228:	EN 228:
Description		Year 2000	50 ppm S	10 ppm S
RON		96.4	96.8	96.8
MON		85.3	86.0	86.0
Density	kg/m ³	753	749	748
RVP	kPa	58.7	57.7	57.7
E70	% v/v	29.4	32.5	32.5
E100	% v/v	50	51.2	51.2
E150	% v/v	85.5	86.1	86.1
FBP	°C	195	193	193
Residue	% v/v	1.0	1.1	1.1
Olefins	% v/v	8.8	9.9	9.9
Aromatics	% v/v	35.4	33.4	33.4
Benzene	% v/v	0.8	0.6	0.6
Sulphur	mg/kg	143	45	6
Induction time	minutes		693	>480
Existent gum	mg/100ml		<1	<1
Cu Corrosion			OK	OK
Lead	mg/l	<1	<1	<1
Phosphorus	mg/l	<1	<1	<1
Carbon	% m/m	86.3	86.0	86.0
Hydrogen	% m/m	13.0	13.2	13.2
Oxygen	% m/m	0.7	0.8	0.8

Properties determination in a single run	 Total "active" surface [RT] Total particle number [RT] Surface and number give mean size [RT] Size segregated solid particle number [RT] Solids particle mass [RT] Gaseous pollutants [RT] Particle mass (VF/nVF) - CVS [CYCLE] Mass weighted size distribution [CYCLE] Number weighted size distribution[SS]
7th International ETH Conference on Combustion Generated Particles Zurich 18-08-2003	 RT: Real Time CYCLE: Mean value over cycle SS: Steady State

Laboratory	Vehicle	Engine Principle	AfterTreatment	Fuel
AV 41	AVL SCANIA •	DIESEL	NO	D6 (300 PPM S)
LA	AVL PROTOTYPE + CRT	GASOLINE	CRT	GG
MT	AVL PROTOTYPE + SCR		SCR	G1
SH	LAT RENAULT LAGUNA		TWC	ETD5
TU	LAT TOYOTA COROLLA		OXICAT	OILD5
VO	LAT BMW 318		CAT DPF	D6
VT	LAT VW GOLF		DPF	D7
EM	MTC PEUGEOT 607		NOX STORAGE	G2
	MTC HONDA ACCORD		OXICAT + DPF	BIODIESEL
	MTC MITSUBISHI CHARISMA			D1
	MTC PEUGEOT 406			RME30
8	MTC VW GOLF TDI	*	φ.	UG (33 PPM S)

Test Temperature			
AMBIENT -7 C -15 C -20 C	<u>^</u>		
	19		

Cycle
ESC MODE 1
ESC MODE 2
ESC MODE 3
ESC MODE 4
ESC MODE 5
ESC MODE 6
ESC MODE 7
ESC MODE 8
ESC MODE 9
ESC MODE 10
ESC MODE 11
ESC MODE 12
ESC MODE 13
OVERALL ESC
ETC URBAN STREETS
ETC RURAL ROADS
ETC MOTORWAYS
ETC OVERALL
ST1 (R49-2)
ST2 (ESC 5)

EURO III	¢,	
EURO III+CRT		
EURO III+SCR		
EURO I		
EURO III+DPF		
ULEV		
EURO II		
EURO II+CRT		
	ψ	

NEDC: PM

Note: Confidence intervals correspont to max, min of all repetitions

Particles Zurich 18-08-2003

Euro III Diesel + trap

SMPS Ntot - 120 km/h

Euro III Diesel + trap

Combustion Generated Particles Zurich 18-08-2003

ELPI N Stages 1-7 - Cold NEDC

Euro III Diesel + trap

Ford Galaxy, 1.9 TD Diesel

Renault Mégane, 1.6 16V Gasoline

Summary & Conclusions

- Sampling parameters are critical if nucleation mode particles are to be taken into account
- Soot particles are easier to characterise
- Necessity to sample and analyze total aerosol but difficult to regulate in certification tests
- Candidate metrics:
 - mass: will remain legislation metric
 - "active" surface : more sensitive than mass, emphasis to small particles
 - total number concentration : nuclei particles are in general unstable

Summary & Conclusions

- Diesel engines and vehicles equipped with a particulate trap produced extremely low particulate mass, low numbers of carbonaceous particles and low total numbers of particles when operating on low sulphur fuels.
- The fuel sulphur effect was greatest under high speed/temperature operation. Under these conditions, higher sulphur fuels resulted in both higher particle mass and number emissions
- Direct injection gasoline vehicles produced measurable amounts of particulate mass emissions over the NEDC cycle, far below conventional diesel vehicles, but higher than trap-equipped diesels