7th International ETH-Conference on Combustion Generated Particles August 18 – 20, 2003

Recent Trends for Filter Development for Diesel Particulate Aftertreatment

A. Schäfer-Sindlinger, C.D. Vogt NGK Europe GmbH Germany

S. Hashimoto, R. Matsubara, T. Hamanaka, F. Katsube and S. Miwa NGK Insulators Ltd., Japan

Abstract:

This paper will give an overview about the recent trend filter development for diesel particulate aftertreatment for passenger cars and heavy duty vehicles. The material development for passenger car diesel particulate filters lead to new materials like silicon carbide while for heavy duty applications still Cordierite plays a major role. However in the future Cordierite might also be used for passenger cars in 4 way catalyst system applications This paper will show the basic difference between both applications and describe the materials in terms of properties (material, back pressure aspects, filtration efficiency) and application on vehicles. Furthermore an outlook will be given on catalysed soot filters.

Recent Trends for Filter Development in Diesel Particulate Aftertreatment

A. Schäfer-Sindlinger, C.D. Vogt NGK Europe GmbH

S. Hashimoto, R. Matsubara, T. Hamanaka, F. Katsube and S. Miwa NGK Insulators Ltd.

7th International ETH-Conference on Combustion Generated Particles, Zurich, August 18 - 20, 2003

- Introduction
- Particulate Filter Applications
- Material Properties
- Pressure Drop of Cordierite and Si-SiC Filters
- Filtration Efficiency
- Regeneration of Particulate Filters

Summary

Trend of Particulate Limits for Diesel Passenger Cars

Particulate limits tighten globally

Introduction

Market Share Diesel Passenger Cars in Europe

Growing market share for diesel vehicles in EU

Particulate Filter Applications

Passenger Cars

- Higher SOF content
- Max. back pressure high
- Temperature level: 150 - 300 °C
- Lower NO content
- Discont. regeneration

Heavy Duty Vehicles

- Lower SOF content
- Max. back pressure low
- Temperature level: 200 - 500 °C
- Higher NO content
- Cont. regeneration targeted

NO₂ regeneration possible with Heavy Duty Vehicles

Particulate Filter Applications

Fuel Additive Systems

- Fast regeneration
- High exotherm
- High ash deposition
- High pressure drop
- Filter cleaning necessary

<u>Catalysed Soot Filter (CSF)</u>

- "Softer regeneration"
- No CO and HC peaks
- Only oil ash deposition
- Lower pressure drop over service life
- No Filter cleaning needed

CSF should reduce ash and back pressure

Passenger Car Soot Filter System

Heavy Duty Aftertreatment System

Heavy duty application maybe combined with SCR

Major difference in design and material properties

NGK Material Properties of Cordierite Filters

Material	C 558 Std. Cordierite	C 611 High Porosity	High Porosity Filter
Material	Filter (w/o coating)	Filter for CSF	for CSF (high loading)
	500μm 2011 - 2012 - 20	500µm	500µm
Porosity [%]	52	59	65
Mean Pore Size [µm]	15	20 - 25	22
Therm. Conductivity [W/mK]	1	1	1
CTE, A Axis [x 10 ⁶ /°C]	1,0	1,0	1,0

NGK Material Properties of Si-SiC Filters

			•	
	NGK Materials	Si-SiC Material for Fuel Additive Systems	Si-SiC Material for Catalysed Filters (CSF)	Si-SiC Material for Catal. Filters (CSF) (High Porosity)
			10 10	100 Jum
P	Porosity [%]	46	52	60
	Mean Pore Size [µm]	20	20	20
[herr	n. Conductivity [W/mK]	30	18	11
C	CTE, A Axis [x 10 ⁶ /°C]	4,0	4	4

11

Impact of Coating on Initial Pressure Drop

Coating increases initial back pressure by ~ 10 %

Impact of Porosity on Pressure Drop with Soot

High porosity filters provide lowest pressure drop

Impact of Porosity on Initial Pressure Drop

Almost no impact with high porosity filters

Non Coated Si-SiC Filters

NGK

Cell Structure, Porosity and Pressure Drop

Soot Loading [g/L]

With soot cell structure has an impact

Si-SiC Filters

CSF Impact of Porosity on Pressure Drop with Soot

Soot Loading [g/L]

High porosity filters advantageous for CSF

Engine Bench Pressure Drop Evaluation

Engine and particulate filter

Experimental Conditions

Engine Type	Common Rail Direct Injection	
Engine Displacement [L]	2,0	
Filter size [inch]	5,66" x 6"	
Filter volume [L]	2,47	

Test procedure

Engine Speed [rpm]	1500-(500) - 5000
Sampling time per step [min]	6
Load	Uptofull load

NGK Engine Bench with 2,0I Common Rail DI Diesel Engine

Pressure Drop Test up to Full Load (1 g/L soot loading)

High porosity and high surface filters advantageous

Filtration Efficiency of Cordierite Filters

Non coated Cordierite Filters versus Soot Loading

Already ~ 95 % efficiency at 0.2 g/L soot loading

Filtration Efficiency

Non coated Si-SiC Particulate Filters

Amount of Soot Loading (g/L)

Filtration efficiency > 90 % at 0,1 - 0,2 g/L soot

Comparison of the Filtration Efficiency by SMPS

Already > 90 % efficiency at 0.1 g/L soot loading

Filtration Efficiency of Cordierite Filters

After soot cake build up filtration efficiency > 95 %

NGI

Filtration Efficiency of catalysed Si-SiC Filters

Soot loading has an impact on filtration efficiency

Regeneration with Fuel Additives

High soot mass limits with Si-SiC materials

Improved regeneration efficiency with CSF

Summary

Passenger cars discontinuous regeneration CRT and SCRT systems likely for heavy duty Low pressure drop with high porosity filters ■ Filtration efficiency > 90 % from 0.1 g/L soot High heat mass and therm. conductivity favourable Good thermal shock resistance with Si-SiC filters High soot mass limits for Si-SiC filters Improved regeneration efficiency with CSF

Thank you very much for

your attention !

A. Schäfer-Sindlinger, C.D. Vogt

The Authors

S. Hashimoto, R. Matsubara, T. Hamanaka, F. Katsube and S. Miwa

wish to thank

ENGELHARD

for submitting catalysts and catalysed soot filters (CSF)

JM

Johnson-Matthey Plc. for providing the cut-away of the CRT

CRT[™] is a Trademark of Johnson-Matthey Plc.

