Comparison of the measured values from the same emission source obtained by using various measurement instruments

> Tetsuya Yamashita Hiroyuki Fukui JCAP Promotion Department

What is JCAP?

(Japan Clean Air Program)

- Collaborative study by automobile industry and petroleum industry (Supported by METI's subsidy)
- JCAP I has been conducted for 5-years from 1997 to 2001

(Budget: Approx. 5.4 billion yen)

• JCAP II has been launched as another 5-years program from 2002

(Budget : Approx. 5.6 billion yen)

Purpose of Unregulated Material WG

For fine particles

- Evaluate engine and fuel technologies aiming at realizing near Zero Emissions
- Clarify appropriate measurement methods to reproduce fine particle emission into the air through measurement method comparison

Cross-check test

Purpose

Figuring out of measurement accuracy: SMPS, ELPI, Nanomet

Repeatability of particle measurement instruments

Variation between several instruments of the same type

Number of participating institutes and measuring instruments

Number of participating institutes: 15

SMPS: 16 unitsELPI: 9 unitsNanomet (DC and PAS): 6 units

Test equipment

Test vehicle and Dilution tunnel

Overall view of distributor

Inside of distributor (probe)

SMPS Test conditions

Fluctuation by Sampling probe position

Measured value Corrected value

Correction method: Assuming that values linearly decrease in order of probe position,

correction is made using ratio of probe position #1 value to value at each position, respectively.

Fluctuation of repeated measurement for SMPS

SMPS specifications list

	Α	В	С	D	Е	F	G	Н	I	J	K	L	0	М	Ν	Р
DMA Type	3080	3081	3080	3081	3081	3081	3081	3081	3071	3081	3081	3080	Model5.5-900	3081	3081	Model5.5-900
CPC Model Number	3026A	3025	3022A	3025A	3025	3025A	3022A	3022A	3022A	3022A	3025A-S	3025A	Model5.401	3022A	3022A	Model5.401

Instrument setting conditions

	Rate(L/min.) Sheath,	Scan Time	Inter Sample	Impactor	Size Range	Charge
CPC Flow	Sample	Up,Down(sec.)	Delay(min.)	Type(cm)	Bounds(nm)	Collection
High	6.0, 0.6	90, 30	1	0.0457	9.65-406	on

Fluctuation of repeated measurement for each SMPS (N=5)

COV in SMPS (1) Particle number concentration and size distribution

COV in SMPS (2) Mode diameter

PM source: diesel under 50km/h constant COV = 9%

COV by SMPS specifications (1)

CPC: 3025

COV by SMPS specifications (2)

CPC: 3022

COV in ELPI

COV in DC and PAS

Conclusion

- For every measuring instrument model, as of particle number concentration, COV of each instruments is approximately 30~50%.
- As for SMPS and ELPI, Using same specification models decreases variation in measurement accuracy.
 (COV:about 40% 15%)
- Variation of particle size measurement is smaller than that of particle number measurement.

(size: about 10%, number: about 30~40%)

- Variation of fine particle measurement instruments are larger than measurement instruments for regulated emissions of automobile exhaust.
- Maintenance and calibration methods for the instruments are required for measurement accuracy improvement.