Sooting premixed C₂H₂ counter flow flames:

Comparison of Measurements and Model Calculations

Elke Goos, Peter Frank

Institute of Combustion Technology, German Aerospace Center (DLR), Pfaffenwaldring 38-40, D-70569 Stuttgart, Germany

Beate Jungfleisch, Rainer Suntz, Henning Bockhorn

Institute for Chemical Technology, University of Karlsruhe (TH), Kaiserstrasse 12, D-76131 Karlsruhe, Germany

Why modeling soot formation ?

Why not modeling a technical combustion process ?

"Soot Formation in Combustion, Mechanisms and Models", Ed. H. Bockhorn, Springer Series in Chemical Physics, Heidelberg, 59, 1994

Soot formation and decomposition

Original picture from "Soot Formation in Combustion, Mechanisms and Models", Ed. H. Bockhorn, Springer Series in Chemical Physics, Heidelberg, 59, 1994

3.0

2.0

Soot growth and soot oxidation

Surface radical production:

Recombination of radicals:

Soot growth:

$$C_{\text{soot}} - H + H = C_{\text{soot}} + H_2$$

$$C_{soot} + H = C_{soot} - H$$

$$C_{soot} \cdot + C_2 H_2 = C_{soot+C2} - H + H$$

Oxidation of the soot particles:

$$C_{soot}$$
-H + OH = products
 C_{soot} · + O₂ = products

$$R(T) = k_{perSite} [Species_{Gasphase}] \mathbf{a} \mathbf{c}_{Sootradical} N_i^{soot}$$

Low pressure premixed flat C₂H₂ flames in a counter flow configuration

Experimental setup : Rayleigh scattering / extinction technique

- Signals are induced by a Ar + or a He-Ne Laser
- Extinction is detected by a photomultiplier
- Scattered light is detected by a ICCD camera

Premixed C₂H₂ flames in counter flow configuration

	Flame 1 (F1)	Flame 2 (F2)	Flame 3 (F3)
Counter flow side:	100 % Ar	90 % Ar	80 % Ar
		10 % O ₂	20 % O ₂
Flow side:	C ₂ H ₂ , O ₂ , Ar-flame C/O = 1.2 , 60 % Ar 90 mbar		

Experimental results: soot volume fractions

Acetylene, argon 60%, C/O = 1.2, v = 15.6 cm/s, counter flow: 100% argon

Height above burner h / mm

Argon counter flow:
Steep increase of f_v at 15 mm HaB

-Addition of O₂ in counter flow:

- Decrease of the maximum of f_V
- Shift of the maximum of $f_{\rm V}$ to lower HaB
 - = displacement of the stagnation plane

Influence of Counter flow Composition (Ar,O₂)

Summary

Investigations at sooting premixed C_2H_2 flames with different counter flow conditions:

- Measurements of soot volume fractions, temperature
- Calculation of measured conditions
- Comparison of results
- => Model calculations explain experimental trends
- => Calculate influence of the gas phase model, the temperature profile on the soot formation

Separation of soot inception process from soot growth and soot decomposition processes possible

=> Soot model will be improved