## **DPF System S-Cube (S<sup>3</sup> : S**oot Solving System

### MLF Volumetric Filtration and Active Regeneration

### **New Generation in Diesel Particulate Filter**



Japan Certification (2004. 1.)



**In-Gweon Lim** 

CATech Inc. (Clean Air Technology) <u>www.CATech.co.kr</u>

Dept. of Mechanical Eng. Myong-Ji Univ. KOREA

Excellent Korean Technology

**KT** Mark Award (2004. 6.)

## Introduction

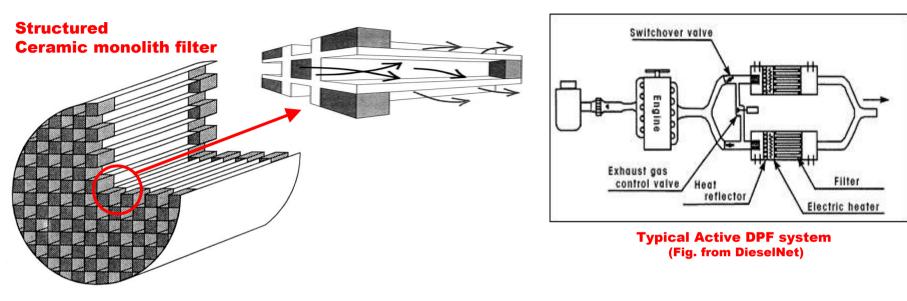
- CATech Inc.
- DPF system S-Cube

## **Profile of CATech Inc.**



### **Company Vision**

Leading Company with Innovative Technologies

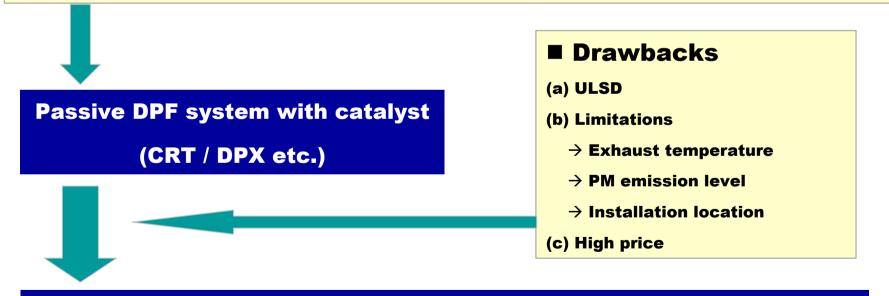

in Energy / Environmental Application for Clean Air

**Main Product / Technology** 

**Diesel Particulate Filter System (DPF)** 

| Address   | San 38-2, Nam-dong, Yong-In,      |
|-----------|-----------------------------------|
|           | Kyunggi-do, 449-728, Korea        |
|           | www.CATech.co.kr                  |
| ■ E-Mail  | iglim@catech.co.kr                |
| ■ Tel/Fax | +82-31-336-6436 / +82-31-336-6434 |

## Facts on structured ceramic monolith filters




| Performance           | ▸ High reduction efficiency with ~100 % for soot and 80~ 95% for PM                                                                                                                                                                                                                                                       |
|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Durability<br>Problem | <ul> <li>Thermal stress and crack propagation during regeneration process<br/>due to non-homogeneous filtration and heating</li> <li>Special regeneration algorithm, essential for active DPF system<br/>(longer and slow regeneration)</li> <li>Surface filtration method, results in rapid pressure increase</li> </ul> |
| Price and maintenance | <ul> <li>High price (with catalyst)</li> <li>Periodic cleaning and replacement of filter due to ash accumulation</li> </ul>                                                                                                                                                                                               |

## **DPF** system with catalyst

### General consent

- → Durability problem, related to structured monolith filters, is occurred by periodic regeneration process in active DPF system, even with specially prepared regeneration algorithm and flow control valves.
- $\rightarrow$  Thus passive DPF system, such as continuous regeneration system by catalyst, may be the solution.



### New DPF system is often sought.

### Need for new DPF system with different concept

### .... specially in Korea

#### Demonstration program in Korea

- ightarrow '97~'98 : 1,400 Garbage trucks in Seoul
- $\rightarrow$  4 DPF systems using structures filters
- $\rightarrow$  Installed after severe certification processes
- $\rightarrow$  Failed

#### 15 years research experience

- ightarrow "Flame propagation within porous ceramic medium"
- $\rightarrow$  Limit on durability with structured ceramics !!

#### System price in Korea

 $\rightarrow$  Feasible and economical price

**New DPF System** 



### Sand, ..... Sand layer .....

### **Can it be used as DPF filter ?**

## .... Small granular chip can be used as filtering material for Nano-size DPM ??

### Let us change DPF filter concept ...

8<sup>th</sup> ETH Conf. On Combustion Generated Nanoparticles

New Concretion in Discol Doutionlate Filter

## **Introduction of S-Cube :**

Active DPF system,

**Newly Certified** 

and Commercialized

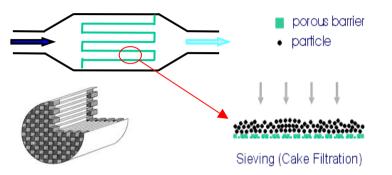
# S<sup>3</sup> (S-Cube : Soot Solving System)



Japan Certified (2004. 1.)



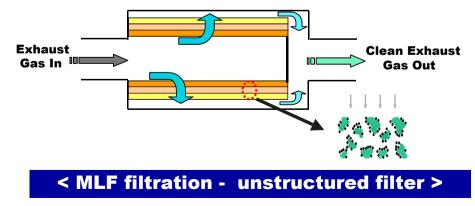
KT Mark Award (2004. 6.)


## S-Cube : Leading Edge Technology in DPF

Volumetric filtration of Diesel PM by MLF (Multi-Layered Filter) of Ceramic Granular Chip and its Integration into Active DPF system



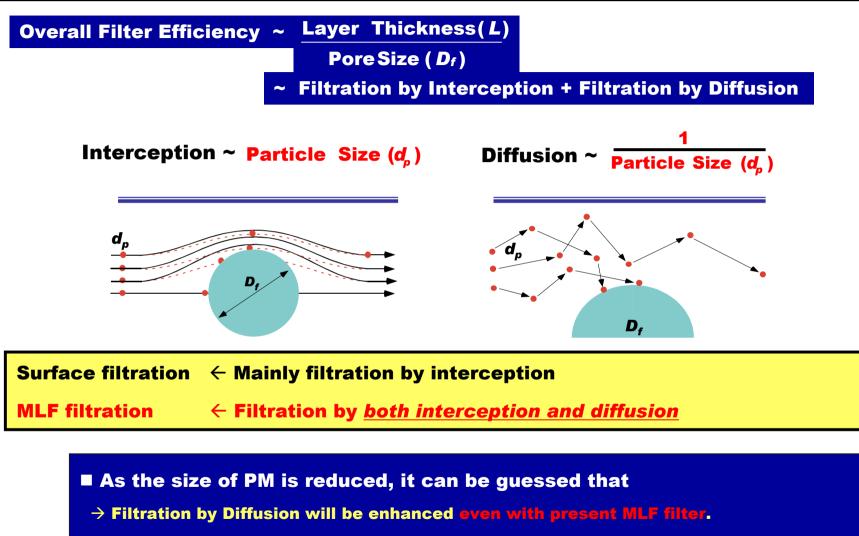
## **MLF - Filtration Mechanism**


#### Back pressure increase $\infty$ due to filter structure + due to PM filtration



< Surface filtration by other structured filters >

#### **Ceramic filter (Surface filter)**


- mean pore size: ~ 12.5  $\mu$ m
- filter thickness : ~ 0.7 mm
- $\rightarrow \Delta \mathbf{P} \propto$  mainly due to PM filtration
- → Steep increase with high PM filtration



#### **CATech MLF filter (Volumetric filtration)**

- mean pore size : 100 ~ 1,000  $\mu$ m
- filter thickness : > 20 mm
- different chip size and thickness for layers
- →  $\Delta P \propto$  mainly due to filter structure
- → Slow increase even with high PM filtration

## **MLF - Filtration Efficiency**



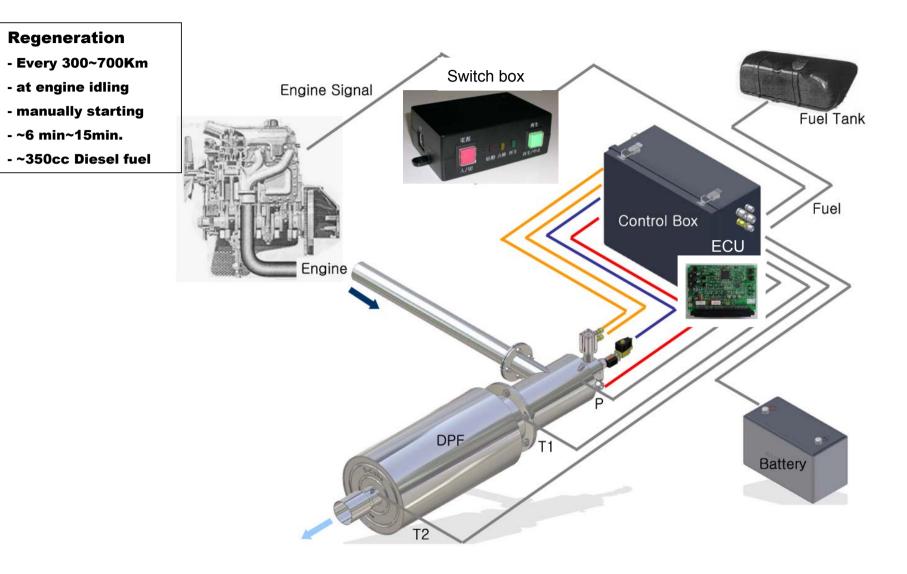
 $\rightarrow$  Thus it could be the solution for Nano-particle problem, which is difficult to expect

from other structured (surface filtration type) filter systems.

8<sup>th</sup> ETH Conf. On Combustion Generated Nanoparticles

Now Concretion in Dissel Doutionlate Filter

## S-Cube : 4 years development






8<sup>th</sup> ETH Conf. On Combustion Generated Nanoparticles

Nous Comparation in Discol Doutionlate Filter

### S-Cube : DPF System – In-Line Burner Regeneration



### S-Cube : DPF System – Electric Heater Regeneratio



<Control Box & Air Compressor>



<Switch Box>







<Signal lamp>

#### Regeneration

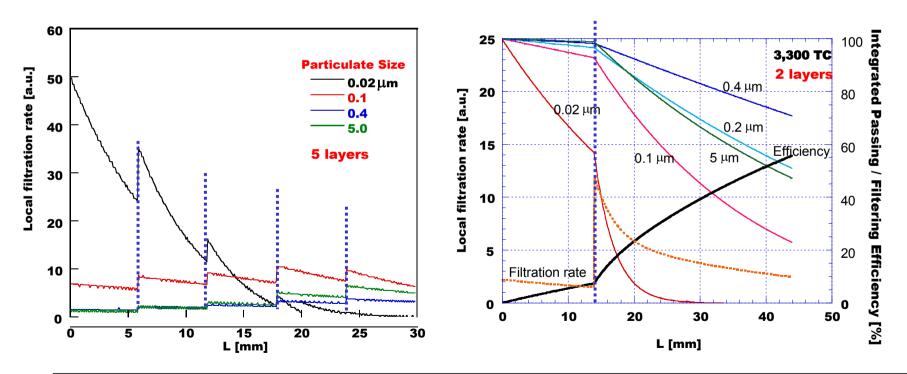
- at engine stop
- 220vAC External power
- ~6.0 Kwh (60 min.)



<Motor-car application>

## **MLF – Design Parameters**

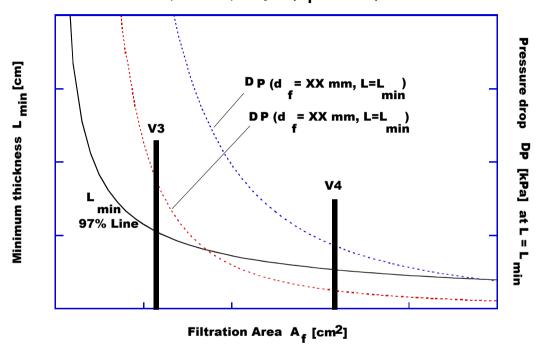
#### A. Design aspects


-Chip Size Distribution, Df

-Layer Thickness, L

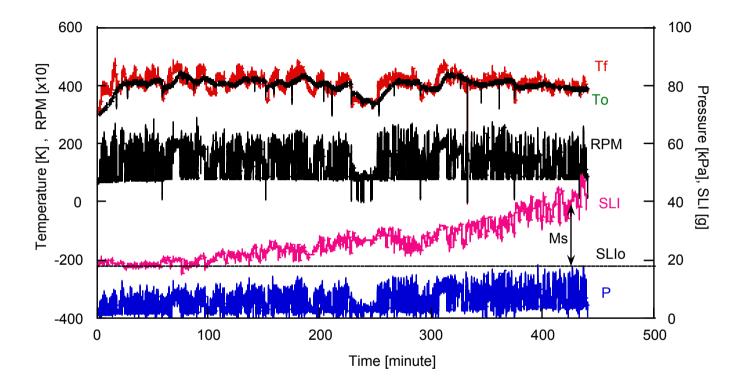
-Filtration Area, (velocity *u*)

#### **B.** Environmental aspects


- -Particulate Size Distribution (dp)
- -Temperature
- -Engine displacement and RPM (velocity u)
- -Local/total filtered mass of particulates (porosity)



- Calculated local filtration rate for various sizes of particulate in layered clean filter at a typical flow condition.


## MLF - Design

 $2,400cc \ 2,500rpm \ (d_{f} = XX mm)$ 




#### Design with Nano-size PM movement analysis

ightarrow for filter surface area, thickness, pressure drop and efficiency.



- Pressure, P, increases with PM loading during real road driving.
- Mass of filtered PM, Ms, is calculated by pressure, RPM and temperatures.
- Tf and To represent temperatures before and after the filter, respectively.
- Vehicle : 4,330 cc NA ISUZU ELF truck 0.5 g/kwh PM emission by Japan D-13 mode.
- Driving : In urban area of Tokyo.

### **Regeneration by In-line burner**



#### **Fuel penalty due to regeneration :**

- ~ 350cc for each regeneration for SC-060MB DPF system (~7L Engine)
- If regeneration at every 350 Km with fuel mileage of 10Km/L vehicle  $\rightarrow$  1% fuel penalty.

### S-Cube : Performance

#### **\* Official performance test data from Japan and Korea test centers**

#### **Test data at Tokyo Metropolitan Environment Research Institute**

#### 5 試験結果

(1) ディーゼル13モード

|     | CO<br>(g/kWh) | HC<br>(g/kWh) | NO <sub>x</sub><br>(g/kWh) | $CO_2$<br>(g/kWh) | PM<br>(g/kWh) |
|-----|---------------|---------------|----------------------------|-------------------|---------------|
| 装着前 | 3.33          | 0.21          | 4.21                       | 1340              | 0.45          |
| 装着後 | 3.82          | 0.19          | 4.03                       | 1360              | 0.04          |

(2) ディーゼル10・15モード及び粒子状物質測定

|     | CO<br>(g/km) | HC<br>(g/km) | NOx<br>(g/km) | CO2<br>(g/km) | 燃料消費率<br>(km/L) | 粒子状物質<br>(g/km) |
|-----|--------------|--------------|---------------|---------------|-----------------|-----------------|
| 装着前 | 0.61         | 0.12         | 0.90          | 258           | 10.1            | 0.05            |
| 装着後 | 0.68         | 0.13         | 0.88          | 266           | 9.80            | 0.01            |

(3) 排気煙濃度試験

| 最高出力時回転数に対す<br>るエンジン回転数の割合 | 40% | 60% | 100% |
|----------------------------|-----|-----|------|
| 装着前平均濃度(%)                 | 20  | 4 3 | 3 0  |
| 装着後平均濃度(%)                 | 0   | 0   | 0    |

Smoke test with load : (100 %  $\downarrow$ )

(4) スモークテスト

| 装着前平均濃度 | 18% |
|---------|-----|
| 装着後平均濃度 | 0%  |

測定結果等の詳細は、別添のとおり。 以下余白。

Smoke test by free acceleration : (100 %  $\downarrow$ )

**\* Power output reduction : less than 2% with D-13 mode test** 

Japan D-13 mode : (PM 91  $\% \downarrow$ )

Japan 10 • 15 mode : (PM 85 %  $\downarrow$ )

## S-Cube : Strength - Economical DPF system

### without any limitations













- **1. Free of durability problem**
- 2. No limitation on fuel, exhaust temp., PM level
- **3. Solution for Nano-PM problem**
- 4. Quick and intensive regeneration
- **5. Economical active DPF system**

#### **1. Heavy and large :**

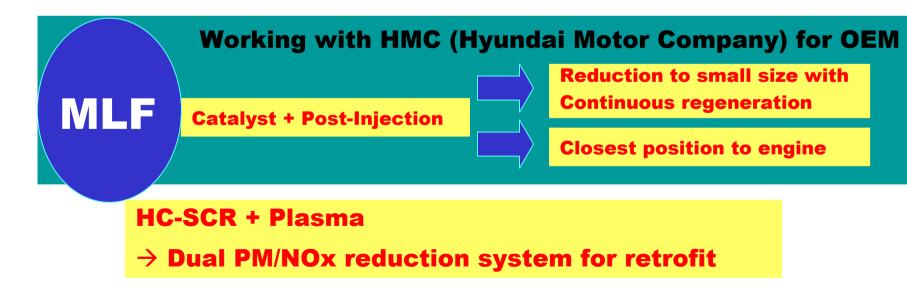
~ due to the reason that to make same pressure level with other structured filters.

#### 2. High CO/HC emission at the moment of burner start-up

~ plan to apply "Clean-up catalyst" to one of filter layers.

### **Product portfolio (Aug. 2004)**

### **Categorized by regeneration method**


- DPF system with In-line burner exported to Japan retrofit market
- DPF system with electric heater regeneration (external electric power)
- DPF filter only on vehicle + external hot gas supplier (available in Dec. '04)

### **Application**

- Retrofit
- OEM
- Diesel generator
- Construction engines and vehicles
- Ship and locomotive engine

## **MLF - High Technology Potential**

- Solution to Nano-particle PM reduction due to diffusion filtration mechanism
- Economical and durability free filter system, sustainable to rapid and intense heatin
- Various functional catalysts, applicable to each layer of MLF
- Design flexibility for various shape, efficiency and size
- Engineering potential for various applications such as locomotives and ship



### DPF retrofit market in Korea

- ightarrow Starting on Jan. 2005
- $\rightarrow$  Market size for DPF/DOC : ~1,200 million(USD) till 2012 (50% from Gov.)
- $\rightarrow$  150,000Km or 3 yr. Warranty
- $\rightarrow$  Bus and trucks with high PM and (or) low temperature (~Euro-II)
- $\rightarrow$  Expected DPF system price for 12L engine : ~about \$6,500 (USD)

#### ■ DPF Maker in Korea with products (2004. 8)

- $\rightarrow$  CATech Inc. (Active type DPF)
- $\rightarrow$  SK (CRT type DPF)

## **Thank you very much !**

# CATech Inc. is looking for best partner for Europe DPF market,....