The Respiratory Tract as Portal of Entry for Inhaled Ultrafine/Nanosized Particles

> Günter Oberdörster Dept. of Environmental Medicine University of Rochester, NY

8th Internatonal ETH-Conference on Combustion Generated Particles August 16-18, 2004 Source emission inventory for South Coast Air Basin surrounding L.A.:

> Primary ultrafine particle emission rate: <u>13 tonnes per day</u>

> > (Cass et al, 2000)

ULTRAFINE/NANO PARTICLES (<100 nm): NATURAL AND ANTHROPOGENIC SOURCES

Natural	Anthropogenic	
	Unintentional	Intentional
gas to particle conversions forest fires volcanoes (<i>hot lava</i>) viruses biogenic magnetite: magnetotactic bacteria; protoctists, mollusks, arthropods, fish, birds, human brain, meteorite? ferritin (12.5 nm) microparticles (<100 nm) (from activated cells)	internal combustion engines power plants incinerators airplane jets metal fumes (<i>smelting, welding, etc</i> .) polymer fumes other fumes heated surfaces frying, broiling, grilling electric motors	engineered nanoparticles: (controlled size and shape, designed for functionality) metals, semiconductors, metal oxides quantum dots/rods fullerenes, nanotubes nanowires nanoshells nanoringsetc (nanotechnology applied to many products: cosmetics, medical, fabrics, electronics, optics, displays, etc.)

Human Exposure Routes:

Polydispere Ambient Ultrafine Particles: Inhalation MonodisperseEngineered Nanoparticles: Inhalation, Ingestion, Dermal, Injection

U of Minnesota Mobile Laboratory

U of Minnesota Mobile Laboratory

Typical Roadway Data, Minnesota

Kittelson et al., 2001

Changes in Heart Rate Following On-Road Exposures to Freshly-Generated On-Road Particles

Plasma Endothelin-2 Levels from Old Rats Exposed to On-Road Ultrafine Particles or Filtered Air with and without LPS Priming

Number and surface area per 10 μ g/m³ airborne particles

Principles of classical particle toxicology may no longer apply

Percent of Neutrophils in BAL 24 hrs after Instillation of TiO₂ in Rats

Correlation with Particle Surface Area

Fractional Deposition of Inhaled Particles in the Human Respiratory Tract (ICRP Model, 1994; Nose-breathing)

Some Pathways of UltrafineParticle Translocation Within and Outside Respiratory Tract

Figure courtesy of J.Harkema

Retention of Ultrafine, Fine and Coarse Particles in Alveolar Macrophages of Rats Determined 24 hrs. Post-exposure by Exhaustive Lung Lavage

Retention of Ultrafine, Fine and Coarse Particles in Alveolar Macrophages of Rats Determined 24 hrs. Post-exposure by Exhaustive Lung Lavage

Oberdörster et al, 1992

Normalized Lung and Liver Excess ¹³C Concentration Following Ultrafine ¹³C Particle Exposure in Rats (n=3)

Extrapulmonary Translocation of Inhaled Ultrafine Particles

Kreyling et al., 2002:15 nm and 80 nm Iridium:
only minimal translocation (0.1 - 0.2%)but:10 times more for 15 nm vs. 80 nm!

Protein binding affecting translocation?

Gold nanoparticles (30 nm) in platelets of pulmonary capillary 30 mins. after intratracheal instillation into rats (Berry et al., 1977)

Nemmar et al, 2002 and 2003:

Thrombogenic effects of positively charged polystyrene nanoparticles (60nm) after intravenous and intratracheal dosing in rodents

x100000 200nm 512 x 480 10KV 4mm DIALT.TIF

Rat Ear Vein Model to Determine Particle Induced Thrombus Using Green Laser (*Silva et al*, 2004)

Rat Earvein Thrombus Model: *Placement of green laser for 30 sec*

Rat Earvein Thrombus Model: *Thrombus formation following illumination.*

Laser illumination time is significantly reduced after intravenous or intratracheal dosing with elemental ultrafine carbon particles Reduction of Laser Exposure Time to Induce Thrombus in the Rat Ear Vein after *IV* or *IT* Instillation of Amine-coated (+) 60nm Polystyrene Particles (125µg/rat)

Silva et al, 2004

Translocation of ultrafine particles to CNS:

- via circulation – *tight blood brain barrier*!

-via olfactory nerve – more likely (has been shown before for inhaled soluble metal salts)

-via perineural pathways into cerebrospinal fluid (CSF) CSF-brain barrier!

Olfactory Nerve Translocation Pathway

From: Kandel, Schwartz and Jessel: Principles of Neural Science, 2000

MRI Scan of Olfactory Bulbs (from Turetsky et al., 2003)

Racette et al., 2001: Welding-related Parkinsonism

Summary: Inhaled Ultrafine/Nanoparticle Toxicology

- High deposition efficiency throughout respiratory tract
- Translocation to extrapulmonary organs *via* circulation
- Neuronal transport via sensory nerves to CNS
- Variable toxicity in respiratory tract: from highly toxic to rather benign

— freshly-generated vs. aged

— pre-exposure history

- Can induce cardiovascular effects; oxidative stress
- Size, chemistry, surface properties (area, charge, reactivity) important

Many open questions:Mechanisms of cardiovascular effects?Organic carbon compounds?CNS effects (Acute, long-term)?Implications for ultrafine particle standard?What is the significance for nanotechnology particles?

INVESTIGATOR TEAM, COLLABORATORS AND SUPPORT OF ROCHESTER-BASED RESEARCH WITH NANO-SIZED PARTICLES — PAST AND PRESENT —

Rochester Crew

Alison Elder Jurai Ferin Jacob Finkelstein Mark Frampton **Bob** Gelein Todd Kraus Paul Morrow **David** Oakes Günter Oberdörster **Rick Phipps** Vanessa Silva Mark Utell Hong Yang

Outside Collaborators

Viorel Atudorei (Univ. of Minnesota) Janet Carter (*Procter & Gamble Co.*) Glenn Cass (Georgia Tech) Vincent Castranova (NIOSH) Christopher Cox (*NIEHS*) Kevin Driscoll (Procter & Gamble Co.) John Godleski (Harvard) Jack Harkema (*Michigan State U.*) Phil Hopke (*Clarkson University*) Wolfgang Kreyling (GSF, Germany) David Kittelson (Univ. of Minnesota) Andrew Maynard (NIOSH) Zachary Sharp (Univ. of New Mexico) Support: EPA; NIEHS: NASA Remaud Vincent (Health Canada)