Combustion Generated Nanoparticles Smaller and Larger than 10 nm

L. A. Sgro!, L. Speranza?, A. C. Barone!, B. Borghese?, P. Minutolo3, A. D’Annal, A. D’ Alessio!, G.Lanzuolo!

"Universita ‘Federico I’ Napoli, %Istituto Motori, CNR, 3Istituto Ricerche sulla Combustione, CNR

Abstract

Using various diagnostics with high sensitivity in the 1-5 nm size range, some of which we are modifying to be sensitive in this size range, we are
working to determine the size and concentration of inception particles formed in the combustion of hydrocarbons. We compare in situ and extra situ
sampling methods since sampling nanoparticles can change the size distribution by losses, coagulation and/or condensation or interactions with the
sampling medium. To examine the particles formed in fuel rich hydrocarbon combustion, we compare size distributions determined by in situ UV-visible
optical measurements, atomic force microscopy (AFM) analysis of thermophoretic samples, and various sizing methods applied to water samples
collected from premixed flames and four last generation engine exhausts. Some combustion conditions generate both soot and nanosize organic carbon
(or NOC) particles, and others produce only NOC particles. Previous work shows that 2 main types of primary particles are formed in rich hydrocarbon
combustion, including soot and NOC particles. Soot particles are hydrophobic, graphitic, 10-50 nm in size, absorb visible light, and grow by coagulation
into aggregates while NOC particles are an order of magnitude smaller, can be trapped in water samples, do not absorb visible light and do not coagulate
readily in flames, even in high concentrations. Water sampling appears to be a method for isolating NOC particles from the more graphitic and
hydrophobic soot particles. Concentrating water samples containing NOC by evaporation increases the signal:noise and certainty in some of the
measurement techniques without affecting the size distribution measured. Slight differences are noted in the size determination of NOC particles in water
samples and the size of NOC particles dried by electrospray, which may provide a measure of the layer of water attached to the particles in the hydrosols
or the particles affinity for water. Since some of the techniques used are modified commercial instruments, we also show their sensitivity and ability to
determine size using molecular standards in the size range of 1-5 nm. Comparing the concentration of NOC particles evaluated by different measurement
techniques indicates that NOC particles constitute 75-90 % of the total organic carbon in the samples after concentration by evaporation. The agreement
in concentration between total organic carbon and NOC concentration determined by UV-visible extinction in the water samples suggests that the UV-
visible extinction can be used to estimate the in situ concentration of NOC particles when the NOC signature spectra is apparent after subtracting other
absorbing species present, as is demonstrated with measurements in diluted engine exhausts. Because of their small size NOC particles have a higher
kinetic energy than soot particles, which is noted experimentally by their relatively lower coagulation rate with other particles and adhesion or sticking
efficiency to substrates in thermophoretic sampling. As a result, AFM measurements show the size range of particles present, including both NOC and
soot particles, but the strongly size dependent sticking efficiency of the particles to the substrate must be taken into account to determine size
distributions from thermophoretically collected samples. As has been done for particle coagulation rate, the sticking efficiency for both NOC and soot
particles on Mica substrates can be modelled within the framework of the kinetic gas theory to determine the original size distribution from AFM
measurements. The calculated size distribution is shifted towards smaller particles, and agrees well with in situ particle size distributions elaborated from
optical measurements in laboratory flames.




Particle Measurement and Collection of Water Samples
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In situ /High Temperature Measurements
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Size Analysis of water samples: DLS and E-DMA
Dynamic Light Scattering (DLS) computer
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particle counts

Example of size determination with E-DMA : Macromolecule Lysozyme
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Calculating Adhesion Efficiency of nanoparticles (or macromolecules)
within the framework of Gas Kinetic Theory (GKT)
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N, = gas phase particle density
m; = particle mass
i= particle size
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*Velocity distribution function is Maxwell-Bolzmann
eInteractions between particles and AFM substrate can be modeled by a Lennard-Jones 6-12 potential, ®_

*Hamaker® constant for nanoparticles = 5*¥10-2! for soot=2*10-2" J (soot is more graphitic with higher polarizability)
*Particles are spherical with a density of 1 g/cm?

The same modeling approach successfully explains the lower coagulation rate of nanoparticles than soot in flames. 7



Adhesion & Coagulation efficiency increases 3 orders of magnitude as a
function of size from the smallest nanoparticle to primary soot particles’
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NOC and Soot size distributions for various engines and operating conditions
Concentration of Soot and NOC — UV-vis extinction measurements
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Total Organic Carbon (TOC) measurement and
NOC concentration in water samples

Total Organic Carbon (TOC) Measurements

Total organic carbon (TOC) concentration was measured with a Shimadzu TOC-5000A Analyzer. After sparging with high purity
oxygen for several minutes to remove CO and CO, in the water samples, the sample is burned in a catalytic combustion tube and
then measures CO, with a non-dispersive infrared gas analyzer.
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Size Distribution of Particles in Water Samples Collected from Engine Exhausts

Vehicles Driven by Dynamometer — Cummulative Sampling — New European Drive Cycle
(NEDC)
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Conclusions

*We measured particles in laboratory premixed ethylene-air flames and 4 last generation vehicles.

*Diesel exhausts contained bimodal size distributions determined by atomic force microscopy (AFM) and UV-vis extinction spectroscopy
»Size distributions are similar for different vehicles and driving conditions

*Gasoline engine exhausts contained mainly Nanosized Organic Carbon (NOC) particles observed by UV-visible extinction spectroscopy,
and AFM measurements show that the particle size distribution is unimodal.
»The mean nanoparticle size varied for different cars.

*The adhesion efficiency on AFM substrates of the smallest nanoparticles is 3 orders of magnitude lower than for soot in flames.

*The modeling approach within the framework of the Gas Kinetic Theory describes well the widely different behaviors of nanoparticles
and soot, both for particle coagulation and for adhesion to surfaces

*Collection of particles in water samples preferably captures the smaller mode NOC particles, accounting for 75 — 90% of total organic
carbon (TOC).

*The size of NOC particles collected in water samples using electrospray — differential mobility analysis and dynamic light scattering is
smaller than those measured by AFM .
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