Combustion Generated Aerosol Precursors

Frank Arnold Max-Planck-Institut für Kernphysik Heidelberg

Talk given at 9 th ETH workshop on *Combustion Generated Nanoparticles*, 15-17 August 2005

Combustion Related Aerosol Particles are important due to their

- Health effects
- Climate effects

• direct effect: scattering and absorption of sunlight

- direct effect: scattering and absorption of sunlight
- indirect effect: particles act as CCN and CFN

- direct effect: scattering and absorption of sunlight
- indirect effect: particles act as CCN and CFN
- particles tend to increase planetary albedo

- direct effect: scattering and absorption of sunlight
- indirect effect: particles act as CCN and CFN
- particles tend to increase planetary albedo
- albedo increase counteracts additional greenhouse warming

- direct effect: scattering and absorption of sunlight
- indirect effect: particles act as CCN and CFN
- particles tend to increase planetary albedo
- albedo increase counteracts additional greenhouse warming
- albedo increase is not well quantified →
 large uncertainties in climate model predictions

clouds contribute most to planetary albedo

oceans covering 70% of planets surface do not contribute much

Visual Manifestations of Combustion Effects on the Atmosphere

Ship Tracks

Spain

France

Combustion Generated Aerosol Precursors

- NUCLEATING GASES:
- CHEMIIONS:
- CONDENSING GASES:
- GASEOUS PRECURSORS of NUC. and COND. GASES:

Combustion Generated Aerosol Precursors

- NUCLEATING GASES: H2SO4
- CHEMIIONS: HSO4-(H2SO4)a(H2O)w
- CONDENSING GASES: H2SO4, organics
- GASEOUS PRECURSORS of NUC. and COND. GASES: SO2

Focus of present talk

nucleating and condensing gas H2SO4

Aerosol Precursor Measurements: Environments

- Free Atmosphere
- Atmospheric Boundary Layer
- Air Craft Wakes (in flight)
- Air Craft Engine Exhaust (at ground level)
- Ship Plumes
- Automobile Exhaust
- Burner Exhaust (laboratory)
- Flow Reactor (laboratory)

Aerosol Precursor Measurements: Environments

- Free Atmosphere
- Atmospheric Boundary Layer
- Air Craft Wakes (in flight)
- Air Craft Engine Exhaust (at ground level)
- Ship Plumes
- Automobile Exhaust
- Burner Exhaust (laboratory)
- Flow Reactor (laboratory)

Atmospheric Gaseous Sulfuric Acid

SULFURIC ACID MOLECULE H2SO4

- Most important property : large GA
 - → proton transfer to other molecule with large PA (Atmosphere : H2O)
 - \rightarrow Gas-Phase Hydrates H2SO4(H2O)n

SULFURIC ACID MOLECULE H2SO4

- Most important property : large GA
 - → proton transfer to other molecule with large PA (Atmosphere : H2O)
 - \rightarrow Gas-Phase Hydrates H2SO4(H2O)n
- Atmosphere : Secondary H2SO4: formed in Atmosphere from SO2 Primary H2SO4 : released from combustion Example: Aircraft

Sources and Sinks of Atmospheric H2SO4

Measurements of Atmospheric Gaseous Sulfuric Acid by MPIK Heidelberg

Atmospheric Gaseous Sulfuric Acid Measurements made by MPIK at ground level

during projecs SCAVEX and QUEST in close collaboration with University of Helsinki and DLR

Mount Zugspitze SFH 2300 m altitude

Conclusions

- particle formation triggered by H2SO4
- only about 5% of particle growth is due to H2SO4/H2O condensation
- particle growth probably due to condensable organics
- see our recent papers Fiedler et al (2005) Boy et al (2005)

Atmospheric Sulfuric Acid Measurements made by MPIK in Aircraft Exhaust

measurements made in close collaboration with DLR

EMISSION INDEX (mg / kg) for modern engine and FSC=400 (100-3000) ppmM

H2SO4 - CONDENSATE	73 (18 - 550)
SOOT	10
COND. HC.	10

Conclusions

- about 2 4 % of fuel sulfur undergoes conversion to gaseous H2SO4
- most of the aerosol mass in an aircraft exhaust plume is due to H2SO4/H2O
- see our publications (following slide)

SO2 Measurements made by MPIK in Oceanship Exhaust

during project **ITOP** (in close collaboration with DLR)

Ship Tracks

Spain

France

UTC

(pptv)

sos

Conclusions

- strong SO2 pollution in marine boundary layer near ship traffic ways
- sounding individual ship tracks is feasible
- next step H2SO4 and OH measurements in marine boundary layer and ship exhaust

Gaseous Sulfuric Acid Measurements made by MPIK in Automobile Exhaust

in close collaboration with University of Helsinki

Conclusions from automobile measurements

- particle formation is induced by H2SO4/H2O nucleation
- less than 10% of particle growth is due to H2SO4/H2Ocondensation
- particle growth is probably mostly due to condensable organics
Acknowledgements

- DLR
- University of Helsinki
- IFT Leipzig
- Members of our MPIK-Heidelberg group

MEMBERS OF MPIK HEIDELBERG GROUP

(2000-2005, 2004-2005 only)

SCIENTISTS

Prof.F.Arnold, Dr.H.Aufmhoff, Dr.B.Umann, Dr.E.Katragkou, Dr.S.Wilhelm, Dr.M.Hanke, Dr.J.Ücker, Dr.A.Kiendler, Dr.S.Eichkorn, Dr.J.Curtius

PHD STUDENTS

M.Speidel, T.Schuck, V.Fiedler, R.Nau, G.Eerdekens,

H.Aufmhoff, B.Umann, E. Katragkou, S.Wilhelm, J.Ücker, S.Eichkorn, M.Hanke, A.Kiendler,

DIPLOMA STUDENTS

A.Kuhlmann, V.Fiedler, R.Nau, J.Hoffmann,

S.Scholz, K.Gerlinger, H. Haverkamp, J.Reimann, D.Wiedner, CH.Schaal, S.Wilhelm, H.Aufmhoff, B.Umann

VISITING SCIENTISTS

Dr.L.Pirjola, Dr.A.Sorokin, Dr.K.Sellegri

TECHNICIANS

B.Preissler, **R.Zilly**, **U.Schwan**, **A.Jung**