D UNIVERSITÄT BERN

9th ETH Conference on CGP: 16. August 2005 Distribution and Clearance of Inhaled Ultrafine TiO₂ Particles in Rat Lungs

Marianne Geiser University of Bern

Airways & alveoli - rodent lung

TiO₂ particle in fibroblast - rat lung

Aim of studies at the ultrastructural level

- > Resolve distribution patterns, retention and clearance pathways at the individual particle level
- Increase knowledge of particle-lung (cell) interaction to better understand adverse and beneficial effects by inhaled particles

NIVERSITÄT

Particle types (insoluble PM 10)

UNIVERSITÄT BERN

b

ั้น

Displacement of PM 10 by surfactant

b UNIVERSITÄT BERN

U,

b

Inhaled and deposited PM 10

UNIVERSITÄT BERN

U

Glass fiber in conducting airway

Puffball spores in alveoli

MMVF 10a in blood capillaries

UNIVERSITÄT BERN

Most profiles with

- > diameter $\leq 1 \mu m$
- > angular surface

Translocation of the particulate fraction of glass fibers beyond the epithelial barrier

Inhalation experiment with ultrafine particles

- > Titanium dioxide (TiO₂)
- > Aerosol: 22 nm CMD
- > Inhalation: 1 h

^b UNIVERSITÄT BERN

- > Deposition: 4-5 μ g, ~2 × 10¹¹particles
- > Lung fixation: 1 h / 24 h after inhalation
- Systematic tissue sampling
- Energy filtering TEM (EFTEM): Electron-energy loss spectroscopy (EELS)

Aerosol generation and inhalation

UNIVERSITÄT BERN

 $oldsymbol{u}_{{}_{\flat}}$

b

U

b

Size distribution of TiO₂ particles in the aerosol

Inhalation experiment with ultrafine particles

- > Titanium dioxide (TiO₂)
- > Aerosol: 22 nm CMD
- Inhalation: 1 h

b UNIVERSITÄT BERN

- > Deposition: 4-5 μ g, ~2 × 10¹¹ particles
- > Lung fixation: 1 h / 24 h after inhalation
- > Systematic tissue sampling
- Energy filtering TEM (EFTEM): Electron-energy loss spectroscopy (EELS)

Localization and elemental micro-analysis of ultrafine TiO₂ particles

^b UNIVERSITÄT BERN

Localization in lung tissue

TiO₂ particles in the lung parenchyma

^b Universität Bern

u

b

On the alveolar surface

Within pneumocyte Type 2

TiO₂ particles in the connective tissue

b UNIVERSITÄT BERN

U

Between collagen fibrils

Within fibroblast (cytoplasm)

Within fibroblast (nucleus)

TiO₂ particles in blood capillaries

D UNIVERSITÄT BERN

U

^b UNIVERSITÄT BERN

b

Distribution of TiO₂ particles in the lungs

Geiser et al., Environ Health Perspect: doi:10.1289/ehp.8006, 2005

Size distribution of TiO₂ particles in the aerosol and in lung sections

b UNIVERSITÄT BERN

b

Summary

Ultrafine TiO2 particles

- > Penetrate through the surface lining layer and the epithelial barrier
- > Distribute rapidly and evenly in all lung tissues and cells
- > Are not membrane bound within cells
- > Overwhelm the biological membranes by a yet unknown mechanism

b UNIVERSITÄT BERN

Collaborators, Support and most recent References

- P. Gehr, V. Im Hof, N. Kapp
 S. Frank, B. Kupferschmid (University of Bern, Bern, CH)
- > W. Kreyling, H. Schulz, M. Semmler (GSF-Neuherberg, Munich, FRG)
- > L.M. Cruz-Orive (University of Cantabria, Santander, E)
- Swiss National Science Foundation (SNF)
- Silva Casa Foundation
- > Swiss Agency for the Environment, Forest and Landscape (BUWAL)
- > Geiser M. et al., J Appl Physiol 94, 2004
- > Kapp N. et al., *Micr Res Techn* 63, 2004
- > Geiser M. et al., *Environ Health Perspect,* doi:10.1289/ehp.8006, 2005

Possible consequences from particle translocation into the lung tissue

D UNIVERSITÄT BERN

Adapted from Gehr et al., Phil. Trans. R. Soc. Lond. A, 2000

Focus of current and future in vivo studies

D UNIVERSITÄT BERN

h

Adapted from Gehr et al., Phil. Trans. R. Soc. Lond. A, 2000

U

Clearance of ultrafine TiO₂ particles by macrophages

	N _{macs}	N _{part}	P _{cytoplasm} / P _{vesicles}		P _{nucleus}	
1 h	264	37	35	1	1	
24 h	246	64	53	3	8	
Total	510	101	87	4	9	

U

Translocation of ultrafine TiO₂ particles into secondary organs

Liver Hepatocyte (mitochondrium)

Liver Hepatocyte (cytoplasm)

Heart Between myofilaments

Collaborators and Support

^b UNIVERSITÄT BERN

- > M. Casaulta, B. Kupferschmid (University of Bern, Bern, CH)
- > W. Kreyling, H. Schulz, M. Semmler (GSF-Neuherberg, Munich, FRG)
- > L.M. Cruz-Orive (University of Cantabria, Santander, E)
- Swiss National Science Foundation (SNF)
- > ?

Transport of ultrafine particles through the nuclear pore complex

^b UNIVERSITÄT BERN

U

Panté & Kann, Mol Biol Cell, 2002

UNIVERSITÄT BERN

9th ETH Conference on CGP: 16. August 2005 Distribution and Clearance of Inhaled Ultrafine TiO₂ Particles in Rat Lungs

Marianne Geiser University of Bern

Airways & alveoli - rodent lung

Puffball spores in airways and alveoli

II,

b

Components of the inner surface of the lungs

Displacement of PM 10 by surfactant

b UNIVERSITÄT BERN

b

Ú

The concept of PM 10 retention and clearance

b UNIVERSITÄT BERN

U

h

Adapted from Cell and Tissue Biology by L. Weiss, Urban & Schwarzenberg Inc. 1988

In vivo: Rodent model

- > Aerosol generation by nebulization
- Aerosol inhalation via endotracheal tube
- > Continuous negative-pressure ventilation
- > Lung fixation by vascular triple perfusion
- > Systematic tissue sampling
- > Light and electron microscopy

b UNIVERSITÄT BERN

 $u^{\scriptscriptstyle b}$

Inhaled and deposited PM 10, by SEM

^b UNIVERSITÄT BERN

U

b

Glass fiber in conducting airway

Puffball spores in alveoli

Deposition of ultrafine particles

D UNIVERSITÄT BERN

h

From Schulz et al., Lenfant Series, 2000

Ultrastructure of the lung parenchyma

^b UNIVERSITÄT BERN

U

Air-blood barrier = 2 μ m 1/50 Air mail paper

Deposition of ultrafine particles in lungs

> High deposition rate
> Alveolar surface = 140 m²
> Air-blood barrier = 2 µm

UNIVERSITÄT RERN

From Schulz et al., Lenfant Series, 2000

Animal model: Lung fixation

UNIVERSITÄT BERN

b

U

Systematic tissue sampling for stereologic analysis

UNIVERSITÄT BERN

h

b UNIVERSITÄT BERN

b

Electron beam - specimen interactions

^b UNIVERSITÄT BERN

b

и

Electron filtering TEM

b UNIVERSITÄT BERN

b

Mono-energetic electrons