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 Project APEX (Aircraft Particle Emissions eXperiment) was a multi-agency 
commercial aircraft emission characterization and technology demonstration experiment.  
Its objective was to characterize particle and trace gas precursor species in the emissions 
from a NASA DC-8 aircraft with General Electric CFM56-2C1 engines at the engine exit 
plane as well as selected down stream locations.  This was to advance the understanding 
of particle emissions and their evolution in the atmosphere from a current in-service 
turbofan engine.  The test was conducted at the NASA Dryden Flight Research Center at 
Edwards Air Force Base California during April 15-30, 2004.  Participants included the 
National Aeronautics and Space Administration, Environmental Protection Agency, 
Federal Aviation Administration, Department of Defense, the aviation industry (General 
Electric, Pratt and Whitney, and Boeing), and the research community (Aerodyne 
Research Inc., Massachusetts Institute of Technology, Process Metrix, University of 
California-Riverside, and University of Missouri-Rolla). 
 The test was conducted on the ground with sampling rakes behind the engine at 
selected locations.  The engine was operated at various power settings ranging from 4% 
to 100% thrust, with three classes of fuels: baseline JP8 (409 ppm sulfur and 17.5% 
aromatic), high sulfur (1639 ppm sulfur and 17.5% aromatic), and high aromatic (Jet A 
with 553 ppm sulfur and 22% aromatic).  The engine was held at each test condition for 4 
minutes, except for the 100% condition which was limited to 1.5 minutes.  Each 
condition was visited multiple times during the campaign. 
 A new instrument, the DMS500, for fast real-time analysis of the size distribution, 
shape parameters, number density, mass concentration and number- and mass-based 
emission indices of exhaust particulates was employed, and here we report a comparison 
of its results with traditional instrumentation, the scanning differential mobility 
spectrometer (TSI Model 3071) and the condensation nuclei counter (TSI Model 3022).  
The samples were collected with probes mounted behind the engine exhaust plane (the 
intercomparison focused on data from a probe 1m behind the engine), and were delivered 
via a sampling train to a distribution plenum in the UMR instrument trailer.  From there 
they were delivered to the various instruments.  For the intercomparison, each 
instrument’s measurements were corrected for losses back to the distribution manifold, 
using size dependent line penetration calibration data.  Differences between instruments 
varied substantially from run to run (see plot of PctDXb vs. umr).  Most of these large 
differences were associated with runs having low signal to noise ratios or signal 
instability.  A weight function was devised to account for these issues, and weighted 
average percent differences and rms percent differences were evaluated for three aerosol 
parameters: number and mass based geometric mean diameters, and total number 
concentration.  The DMS500 agreed well with traditional slower instrumentation.  For 
number based geometric mean diameter, the DMS tended to be slightly below the DMA, 
by 3% on average, with a 12% scatter (rms average difference).  For mass weighted 
geometric mean diameter, the DMS was systematically low, by 8% on average, with a 
15% rms difference.  For total particle concentration, the DMS was systematically high 



by 60% in comparison to the TSI model 3022, with a rms difference of 61%.  This is 
comparable to the difference seen by Kittleson et.al. (D. Kittleson, T. Hands, C. 
Nickolaus, N. Collings, V. Niemela, and M. Twigg, “Mass correlation of engine 
emissions with spectral instruments”, JSAE Paper No. 20045462) between a DMS500 
and a TSI CPC for diesel emissions. 
 Aerosol parameters did show dependencies on power, fuel type, and distance 
behind engine exit plane.  The geometric mean diameter was observed to increase 
monotonically with power for all fuels, and ranged from 15 to 34 nm.  The geometric 
standard deviation (sigma) generally increased with power for all fuels, ranging from 1.5 
to 1.8.  This represents a factor 3 to 4 increase in halfwidth.  The number based emission 
index (EIn) had a maximum at low power and was larger at 30m than at 1m for low and 
mid-range power.  EIn for 1m and 30m converged at high power, where the temperatures 
are highest and plume residence times are lowest.  This is compatible with gas-to-particle 
conversion being active in the plume.  The mass based emission indices also exhibited 
this trend, converging at high power and diverging at low power, although not as strongly 
as for the number based emission indices. 
 The hydration properties of the exhaust aerosol were characterized using 
deliquescence measurements with a tandem DMA system.  The original dry (40 nm and 
60 nm) and deliquesced size information was converted into soluble mass fraction 
assuming sulfuric acid as the soluble species.  The average (over size and power) soluble 
mass fractions are plotted vs. probe distance behind the engine (smf vs. PLoc).  No 
statistically significant soluble material was observed at the 1m and 10m locations, for 
any fuel type.  For the 30m probe, soluble material was found, with soluble mass 
fractions of 0.057±0.026 for the baseline fuel, 0.115±0.076 for the aromatic fuel, and 
0.151±0.085 for the Hi sulfur fuel.  This hydration behavior is compatible with gas-to-
particle conversion being active in the plume. 
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pen2(Rk1)=-.04954*(lnx)^2+.6118*(lnx)-.8963                    if xnm < 500
1 if xnm > 500

pen2(dms)=-.04036*(lnx)^2+.4735*(lnx)-.3787  if xnm < 210
1 if xnm > 210

pen3(cnc) = 0.2539*(lnx)-0.1647 if xnm < 98
1 if xnm > 98

apex pen's, UMR distr plenum to DMS, Rk1, and CNC

0.0
0.2
0.4
0.6
0.8
1.0
1.2

1 10 100 1000

ln(xnm)

Pe
n

Rk1

DMS

CNC

 
 



APEX Rk1 - dms differnces
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Dgeom vs. Power
Ploc 1m, NASA Sequences
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Sigma (geometric standard deviation) vs. Power
Ploc 1m, NASA Sequences

4%

7%

30%

40%

65%

85%

100%

Power

Si
gm

a

Half width = Dgeom (Sigma -1)

Sigma
•Sigma generally 
increases with power for 
all 3 fuels and ranges 
from 1.5 ~ 1.8

•This increase in Sigma 
represents a factor of 
3-4 increase in half 
width from 
7.5 - 26.4nm

0

1

2

3

Base Fuel

0

1

2

3
High Sulfur Fuel

0

1

2

3

High Aromatic Fuel

 
 



EIn (1e15/kg_fu) vs. Power
Ploc 1m and 30m, NASA Sequences
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EIn (1e15/kg_fu) vs. Power
NASA Sequences
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EIm (g/kg_fu) vs. Power, 
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Fig 2.  Soluble mass fraction v. probe position from UMR Deliq.
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Objectives

To characterize particle and trace gas 
precursor species from the NASA aircraft 
DC-8 with CFM56-2C1 engines at the 
engine exit plane as well as at selected 
down stream locations to advance the 
understanding of particle emissions and 
their evolution in the atmosphere from a 
current in-service turbofan engine



Test Location

NASA DFRC @ Edwards AFB, CA

Test Period

April 15 – 30, 2004

Test Aircraft/Engine

NASA DC-8 with CFM56-2C1 engine



Team
Participants:

NASA (DFRC, GRC, LaRC), EPA, FAA,
DoD (AEDC, NAVAIR, NFESC, WPAFB),
Aviation Industry (GE, Boeing, PW),
Research community (ARI, MIT, PM, UCR, UMR)

Sponsors: NASA
EPA
DOD

Manager: Dr. Chowen Chou Wey
NASA GRC
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pen2(Rk1)=-.04954*(lnx)^2+.6118*(lnx)-.8963                    if xnm < 500
1 if xnm > 500

pen2(dms)=-.04036*(lnx)^2+.4735*(lnx)-.3787  if xnm < 210
1 if xnm > 210

pen3(cnc) = 0.2539*(lnx)-0.1647 if xnm < 98
1 if xnm > 98



Percent differences between instruments

APEX 383 runs  (u=1,2,3,…,383)

{xj, snj}dms,u ==> Dgndms,u Dgmdms,u TCNdms,u

{xj, snj}tsi,u ==> Dgntsi,u Dgmtsi,u

TCNcnc

PctDgnu ==> 200*(Dgndms,u – Dgntsi,u)/ (Dgndms,u + Dgntsi,u)

PctDgmu ==> 200*(Dgmdms,u – Dgmtsi,u)/ (Dgmdms,u + Dgmtsi,u)

PctTCNu ==> 200*(TCNdms,u–TCNcnc)/ (TCNdms,u+TCNcnc)
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Uncertainty metrics
Quantify the uncertainty in the measurements for a given run (u).

Stb = Signal to background.

PctDDg Differences between 2 TSI DMA size sweeps.

Dgdms, σDg,dms From average of ~ 20 sweeps.

Build a weight function that will give a large weight to good data having low 
uncertainty and small credit to marginal data having high uncertainty.

Convert these uncertainty parameters into ones that increase with goodness of the data:
Stb,   100/PctDg,   Dgdms/σDg,dms

rf reciprocal fractional errors
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apex weight fct analysis-stb
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Global weight function:

w_Dgn = w_(100/PctDg) * w_(Dg/sig_Dg) * w_stb

<PctDgn> = [Σ PctDgn * w_Dgn ] / [[Σw_Dgn ]

rms PctDgn = Sqrt { [Σ PctDgn2 * w_Dgn ] / [[Σw_Dgn ] }



DMS-DMA Intercomparison

Parameter Avg Pct Diff RMS Pct Diff

Dgn -3 12

Dgm -8 15

TCN 60 61



Intercomparison Summary

• The DMS500 agreed well with traditional slower 
instrumentation.

• For geometric mean diameter, the DMS tended 
to be slightly below the DMA, by 3% on average, 
with a 12% scatter (rms average difference).

• For mass weighted geometric mean diameter, 
the DMS was systematically low ( by 8% on 
average), and the rms difference was 15%.



• For total particle concentration, the DMS 
was systematically high by 60% in 
comparison to the TSI model 3022, with a 
rms difference of 61%.

• Comparable difference (59%) to that seen 
by Kittleson et.al. between DMS500 and a 
TSI CPC for diesel emissions.



Dgeom vs. Power
Ploc 1m, NASA Sequences
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Sigma (geometric standard deviation) vs. Power
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EIn (1e15/kg_fu) vs. Power
NASA Sequences
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Hydration Properties

• Objective – To determine the PM soluble 
mass fraction.

• Method - Deliquescence



Fig. 1  Schematic of UMR deliquescence apparatus.
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Fig 2.  Soluble mass fraction v. probe position from UMR Deliq.



CONCLUSIONS:

1.  Two classes of particles were measured.  These had dry diameters of
approximately  40 nm and 60 nm.  The results of both classes of particle 
diameters and the results of all thrust settings are combined in the 
previous plot and the following conclusions. 

2.  At the 10 m probe, the soluble mass fraction (sol mf) was not statistically
different from that at the 1 m probe.

3.  At the 30 m probe, the soluble mass fraction (sol mf) was
0.057 +/- 0.026       for the baseline fuel (overlaps with 10m),
0.115 +/- 0.076       for the aromatic fuel, and
0.151 +/- 0.085       for the Hi sulfur fuel.



Spares





Weight function for fractional error uncertainties 
 
f = fractional error 
w_f = weight function 
rf = reciprocal fractional error 
 

f rf w_f
inf 0 0

0.8 1.25 0.05
0.5 2 0.2
0.2 5 0.7
0.1 10 0.9

0.05 20 1
 
A good fit to this is given by: 
w_f = tanh(rf / const), const=5.765 



Weight function for signal to background 
 
w_stb = [tanh(stb/c1 – c2) + tanh(c2) ] / (1 + tanh(c2)) 
(Wanted a less-sharp curve at small stb) 
This is a two parameter fit, we need two data points: 
stb:  1  8 
w_stb 0.1  0.9 
A non-linear fit yields   
 C1 = 4.02775 
 C2 = 0.783 



EIn (1e15/kg_fu) vs. Power
Ploc 1m and 30m, NASA Sequences
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EIm (g/kg_fu) vs. Power, 
Ploc 1m and 30m, NASA Sequences
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