A Nano-size Particle Sampler using a Differential Mobility Analyzer

9th ETH Conference on Combustion generated Nanoparticles, 17, Aug. 2005

Toshihiko MYOJO, Mariko Ono-Ogasawara National Institute of Industrial Health, Kawasaki, Japan

Ikegami-shincho

Contents

• Objective

- Differential mobility analyzer
- PAH analysis using direct injection GC-MS
- Field sampling
- Results

Objective

- Differential mobility analyzer (DMA) extracts aerosol particles ranging from 1 to 1000 nm in diameter.
- It is advantageous that DMA can be operated at normal pressure condition, because volatile or semivolatile PAHs are unstable at low pressure.
- We tested twin custom-made DMAs as nano-particle samplers.
- DMA sampling flow-rate was increased up to 4 l/min to increase sample mass.

Contents

• Objective

• Differential mobility analyzer

- PAH analysis using direct injection GC-MS
- Field sampling
- Results

Specification of DMA

Electrode length L: 40 cm

Electrode radius r_1 : 2.5 cm r_2 :1.5 cm

Applied voltage V: 0 – 10000 V

Sheath flow rate Qc: 3 – 30 L/min

Size classification theory of DMA

Electrical mobility of particle; Z_p

 $Z_{\rm p} = \rho e C_{\rm m} / (3\pi \mu d_{\rm p}) \tag{1}$

d_p: diameter, *p* :number of charge, *e* :elementary charge, μ :viscosity, Cm: Cunningham's correction factor

Size classification theory of DMA (cont.)

Electrical mobility of particle extracted through DMA slit; Z_{pc}

 $Z_{pc} = \{Qc + (1/2)(Qa - Qs)\} \ln(r_1/r_2) / (2\pi VL)$ (2)

Width of the mobility spread; ΔZ_p

$$\Delta Z_{p} = (Qa+Qs) \ln(r_{1}/r_{2}) / (2\pi VL)$$
(3)

Aerosol concentration at DMA outlet

Aerosol concentration at DMA outlet

Aerosol concentration extracted through DMA slit; Δn_o Aerosol concentration of the size at Z_{pc} ; n_i

(4)

(5)

(6)

If Qa = Qs, then $\Delta Z_p = (2Qa/Qc) Z_{pc}$ $\Delta n_o = n_i (2Qa/Qc) Z_{pc}$

Collected particles =Qa $n_i (2Qa/Qc) Z_{pc}$ for unit time

Ambient aerosol concentration at DMA outlet

Size distribution of outlet aerosol from DMA (sequentially measured by SMPS)

Size distribution of outlet aerosol from DMA (sequentially measured by SMPS)

Contents

- Objective
- Differential mobility analyzer
- PAH analysis using direct injection GC-MS
- Field sampling
- Results

PAH analysis using direct injection GC-MS

Phenanthrene	PHE	
Anthracene	ANT	
Fluoranthene	FLU	
Pyrene	PYR	
Benzo(a)anthracene	BaA	
Chrysene	CHR	
Benzo(b)fluoranthene	— BbkF	
Benzo(k)fluoranthene		
Benzo(e)pyrene	BeP	
Benzo(a)pyrene	BaP	
Indeno(1,2,3-cd)pyrene	IND	
Dibenzo(a,h)anthracene	DBahA	
Benzo(ghi)perylene	BghiP	

GC conditions

- Instruments: Thermoquest TraceGCQ
- Column:

SGE HT8, 30 m x 0.25 mm i.d., Film thickness: 0.25mm

- Carrier Gas : He 1mL/min
- Temp Condition: 80°C (1 min, hold) 15°C/min to 350°C (9 min)
- Inj. Temp: 300°C, Splitless Injection

MS conditions

- Ion Source Temp: 225°C
- Transfer Line Temp: 300°C
- MS Mode: Selected Ion Monitoring (SIM Mode)
- Standard Sample:
 - NIST Standard Reference Material 1649 (Ambient Particulate Matter)
- PAH concentration was determined by comparison of peak area of the standard sample and collected sample.

Chromatograms (NIST SRM1649) 100 Phenanthrene Anthracene $M_{W}=178$ 8.21 10.73 12.15 Fluoranthene 13.50 13.88 MW=202 12.64 Pyrene 12.64 14.31 16.00

Calibration curves (NIST SRM1649)

Contents

- Objective
- Differential mobility analyzer
- PAH analysis using direct injection GC-MS
- Field sampling
- Results

Ikegami-shincho, Kawasaki, Japan

Sampling conditions

- Date: 2005, Jan. 24 Jan. 28
- Sampling flow rate;

Whole: 2 L/min

DMA 1 and 2: 4 L/min

- DMA sheath flow rate: 12L/min
- DMA 1: 1025 V, DMA 2: 6090 V
- Filter: Whatman QM-A micro quartz fibre filter

Contents

- Objective
- Differential mobility analyzer
- PAH analysis using direct injection GC-MS
- Field sampling
- Results

Particles deposited on DMA electrodes

100 nm pore

PAHs concentration and their ratio

PAHs concentration and their ratio

ng/m³

80 nm

240 nm

whole

Sampled ambient particles on each filter at Ikegami-shincho

	Whole DM	1A	
Date		240 nm	80 nm
2005/Jan/24	Collected particle mass* (µg)		
/	600	50	30
	Whole PAH **(ng)		
2005/Jan/28	239	51.8	22.9
	BaP (ng)		
	12.9	3.8	1.5
	Sampling volume (m ³)		
	11.2	21.8	22.4

- *: Sensitivity of balance =10 μ g
- **: Sensitivity of PAH analysis = 0.1 ng

Summary

- > DMA can be used as a nanoparticle sampler.
- To increase flow ratio of aerosol flow and sheath flow of DMA means to increase particle amount through DMA slit.
- Four days sampling by this sampler at road side collected enough amount of nanoparticles for chemical analysis of PAHs.
- If we can increase DMA sheath flow-rate, we can increase sampling flow rate more than 4 l/min.

Acknowledgements

- The authors deeply appreciate to Dr. S. Kobayashi, National Institute of Environmental Studies, for his arrangement of their air monitoring station at Ikegamishincho, Kawasaki, Japan.
- This work was supported by grants of EPA, Japan and the Smoking Research Foundation.

