EXTRAPULMONARY EFFECTS OF INHALED NANO-SIZED PARTICLES

Günter Oberdörster University of Rochester Rochester, NY, USA

×

Zürich, Switzerland August 15 - 17, 2005

Fractional Deposition of Inhaled Particles in the Human Respiratory Tract (ICRP Model, 1994; Nose-breathing)

Idealized Size Distribution of Traffic-Related Particulate Matter

University of Minnesota Mobile Emissions Laboratory (MEL)

air-conditioned compartment

Year 1

Year 2

exhaust intake

Description of On-Road Experiments using MEL

Air-conditioned trailer

Animals: 21 month-old F-344 rats; ~15 month-old SH rats

Respiratory tract **priming exposures**:

Inhaled LPS

Instilled influenza virus (2 days prior to or 18 hrs after last on-road exposure)

Atmospheres: filtered air, gas phase only, particles/gas phase

Duration of exposure: 6 hrs **or** 3 days x 6 hrs **Particle Size** (CMD): 13 - 19 nm **Number concentration:** $1.3 - 7.6 \times 10^{5}$ /cm³

TNF-α and TNF-α Receptor I Gene Expression in 21 month-old Rats Exposed for 1 Day in MEL

Method T.H.E. R.A.T.

Tracking HRV in Electrocardiographic Recordings from Animals using Telemetry.

Couderc et al, 2005

Nano-sized Ambient and Engineered Particles

100 nm

- (a,b) Primary chain aggregates from internal combustion emissions with low (a) and high (b) fractal dimensions from L.A. basin (*Xiong & Friedlander*, 2001).
- (c) Fe-oxide particles generated by electric spark discharge: note branched chain-like structures (*Roth et al., 2004*).
- (d) Engineered γ-Fe₂o₃ nanoparticles, monodispersed singlets (3 nm). (*Yang & Teng, unpublished results*).

Particle bound reactive oxygen species (ROS) on PM2.5 were found in both locations. The contribution of these ROS to adverse health effects will be evaluated in future studies.

CELL FREE REACTIVE OXYGEN SPECIES (ROS) ANALYSIS

Principle:

2'-7' Dichlorodihyddrofluorescein diacetate (DCFD) oxidation by nanoparticles in PBS-buffer in presence of HRP

 H_2O_2 as standard oxidant

Expression of oxidative potential of nanoparticles as H_2O_2 equivalents

Exposure and Biokinetics of Nanosized Particles

- → Confirmed routes
- ---> Potential routes

Translocation rates are largely unknown!

Oberdörster et al. 2005

Olfactory Nerve Translocation Pathway

From: Kandel, Schwartz and Jessel: Principles of Neural Science, 2000

FROM NOSE TO BRAIN: POTENTIAL TRANSLOCATION PATHWAYS OF NANOPARTICLES

Studies of Neuronal Translocation of UFP from Respiratory Tract

- 1941: Bodian and Howe: <u>Olfactory</u> axonal transport of Poliovirus (30 nm) after intranasal instillation in chimpanzee. Transport velocity: 2.4 mm/h
- 1970: *de Lorenzo*: <u>Olfactory</u> axonal transport of 50 nm silver coated gold after intranasal instillation in squirrel monkey. Transport velocity: 2.5 mm/h
- 1998: *Hunter and Undem*: Rhodamine-labelled 40 nm microspherest ranslocation via sensory nerves of <u>*TB region*</u> to ganglion nodosum in hamster after intratracheal instillation.
- 1999: *Hunter and Dey*: Retrograde tracing of <u>trigeminal</u> neurons from nasal epithelium with microspheres
- 2004: *Oberdörster et al.*: ¹³C particles (CMD ~36 nm) in *olfactory* bulb after whole-body inhalation exposure in rats.

Nanosized Mn-oxide particles (Vapor-phase generated)

SEM

Rat, Right Nostril Occlusion Model:

Accumulation of Mn in Right and Left Olfactory Bulb Following Exposure to Ultrafine (~30 nm) Mn Oxide Particles (n = 3 - 5, mean +/- SD)

Day 0= 6 hr exposure, immediate sac.

Day 1= 6 hr exposure 24 hr sac.

 $Day2= 2 \times 6hr exposure$, 24 hr sac.

Rat, Right Nostril Occlusion Model:

Accumulation of Mn in Right and Left Olfactory Bulb Following Exposure to Ultrafine (~30 nm) Mn Oxide Particles (n = 3 - 5, mean +/- SD)

Day 0= 6 hr exposure, immediate sac.

Day 1= 6 hr exposure 24 hr sac.

 $Day2= 2 \times 6hr exposure$, 24 hr sac.

Nanoparticles: From the Nose to the Olfactory Bulb, and Beyond?

Mn concentration in lung and brain regions of rats following 12 days ultrafine Mn-oxide exposure (mean +/- SD)

midbrain

Conclusions

Biokinetics of nano-sized particles are different from larger particles:

— when inhaled:

efficient deposition in all regions of respiratory tract, evade specific defense mechanisms, can translocate via different pathways endocytosis, transcytosis into lymph and blood circulation neuronal pathways to CNS

— when in blood circulation:

distribution to whole organism, uptake into liver, spleen, heart, bone-marrow, others

Important: Evaluation of potential toxicity (oxidative stress, inflammation!)

Conclusions (cont)

Biological activity and biokinetics are dependent on many parameters

-size; -shape; -chemistry; -crystallinity;
-surface properties (area, porosity, charge, coating)
-agglomeration state; -biopersistence; -dose

Dose and dosemetric for combustion nano-sized particles:

- mass small compared to fine and coarse

-number easy measurement, indicative of ultrafines

- surface measurement more involved, not in real time

Chemistry

(solubility,

volatility)

Essential for Nanotoxicology Research : Multidisciplinary Approach!

INVESTIGATORS AND COLLABORATORS OF ROCHESTER-BASED RESEARCH WITH NANO-SIZED PARTICLES

<u>U. ROCHESTER</u>

Jean Phillippe Couderc Alison Elder Jacob Finkelstein Mark Frampton **Robert Gelein** Günter Oberdörster **Richard Phipps** Vanessa Silva Kim Tieu Mark Utell Wojtek Zareba

CLARKSON UNIVERSITY

Phil Hopke

<u>U. CALIFORNIA - San Diego</u>

Kim Prather

<u>U. MINNESOTA</u> David Kittelson David Pui Win Watts

U. NEW MEXICO

Viorel Atudorei Zachary Sharp

WASHINGTON U./St. Louis

Pratim Biswas Da-Ren Chen

GSF, GERMANY

Wolfgang Kreyling Annette Peters Erich Wichmann

HEALTH CANADA

Renaud Vincent

<u>NIOSH</u>

Vincent Castranova Andrew Maynard

<u>ORNL</u> Meng Dawn Cheng

PROCTER & GAMBLE CO.

Janet Carter

Support: EPA; DoD; NIEHS; NSF