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We report on the structure of a set of diesel exhaust samples that were obtained from reference 
diesel fuel and diesel fuel mixed with ferrocene. The reference diesel soot shows a pronounced 
graphite-like microstructure and molecular structure, with a strong (002) graphite Bragg reflex and 
a strong aromatic C=C resonance at 285 eV. The mineral matter in the reference soot could be 
identified as Fe2O3 hematite. The soot from the diesel with ferrocene has an entirely different 
structure and lacks significantly in graphite-like characteristics. NEXAFS spectra of such soot 
barely show aromatics but pronounced contributions from aliphatic structures. WAXS patterns 
show almost no intensity at the Bragg (002) reflection of graphite, but a strong aliphatic γ-side 
band. Owing to the nanometer size of particles and the fact, that the relatively high surface energy 
enters the thermodynamic equations for crystal grwoth, the iron from the ferrocene transforms to 
Fe2O3 maghemite, rather than the bulk form hematite. 
Our research team has recently published a number of studies on the morphology and molecular 
structure of diesel exhaust particulate matter (diesel soot) with results obtained from X-ray and 
synchrotron radiation based characterization techniques. Diesel soot is frequently believed to be a 
major constituent of carbonaceous airborne particulate significant matter in the environment, 
known to cause adverse health effects and suspected to have a impact on global climate change. 
It is the unwanted solid carbonaceous byproduct of combustion of diesel fuel, in particular from 
diesel engines that power heavy equipment, cars, trucks, busses, railway locomotives and 
maritime vessels. The size of soot particles is an important quantity both for access to lung and for 
abatement devices in vehicles. 
Experiments with ferrocene as a fuel additive have been reported before on methane and ethylene 
flames, and more recently on diesel fuel. Surprisingly, when we mix diesel fuel with ferrocene, the 
emerging soot lacks significantly in graphitic characteristics. Our WAXS and NEXAFS data indicate 
clearly that ferrocene prevents the carbon during diesel combustion from forming aromatic 
structures with double bonds, with a drastic impact on the formation of soot particulates. This 
seems a surprising finding since ferrocene is known to promote graphitization and used for such in 
industrial applications. The aim of the current study is to show how ferrocene, when added to 
diesel fuel, modifies the crystallite size and structure of the soot particles. 
In summary, adding ferrocene to diesel fuel has a dramatic impact on soot formation processes 
and on the molecular structure and nano-structure of soot. The graphitic structure of soot is 
dramatically altered in favor of aliphatic structures. According to the WAXS data, aromatic 
graphene sheets still seem to be present, but at a very small stack height. The majority of the 
ordered carbon comes in aliphatic structures. The iron persists as maghemite, but in significantly 
greater quantity. The carbon NEXAFS data support findings about the carbonaceous material, in 
particular the formation of aliphatic structures during combustion in the presence of ferrocene. 
Higher engine speeds make a significant difference on the graphite- like carbon formation, this is, 
at higher engine speeds ferrocene suppresses formation of the nanocrystalline graphite-structures, 
and enhances the aliphatic structures. This holds at least for the speed range studied here: 1500–
2200 rpm. The soot from non-doped fuel seems to be largely unaffected by the change in speed. A 
similar effect has been observed with oxygenated fuels. Graphite is a thermodynamically and 
kinetically stable form of carbon that can persist for long times in the environment, the atmosphere 
and even in the universe. It resists more to oxidation than other forms of solid carbon. In contrast, 
aliphatic carbon can be much more easily oxidized. Since mixing diesel fuel with ferrocene 
generates soot with less graphitic but more aliphatic structure, this may be a route to accelerating 
oxidation of soot. However, with respect to the respiratory toxicity of ferrous oxides, which can be 
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present in the soot and in the ash, subsequent exhaust filtration to prevent release of toxic agents 
into the atmosphere, is mandatory. 

 

Present address: EMPA, Überlandstrasse 129, CH – 8600 Dübendorf, Switzerland, +41 (0)44 823 
4850, email: artur.braun@alumni.ethz.ch
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This talk will be presented again this week at
EMPA Dübendorf, LA 373
14:00, Friday, August 25, 2006

See also Poster # 57 „Traffic Exhaust or Wood Smoke ?“
by M. Heuberger-Vernooij et al.
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Direct correlation: Particle concentration ~ Mortality ratio

Suspected role in global climate forcing

Airborne fine particulate matter  - Feinstaub
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Soot takes center stage
W.L. Chameides, M. Bergin;Science (2002) 297 2214

“The 6 Cities Study”
D.W. Dockery et.al., New Engl. J. of Medicine (1993):329/24 1753-1759. 
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Interest in iron-catalyzed combustion of diesel fuel, such as by ferrocene(C5H5)2Fe

Purpose: improve exhaust aftertreatment
promote oxidation of diesel soot trapped in a particulate filter

Significant effect on size + amount of particle emissions:
- PM mass substantially reduced, but larger number of ultrafine particles
- Size range of PM greatly shifted towards smaller particles

References:
- Burtscher et al., Characterization of particles in combustion
engine exhaust. J Aerosol Sci 1998;29(4):389–96
- SAE papers by P. Richards et al., Octel Company

Here:
Investigation of soot molecular structure and nano-
/microstructure with X-ray spectroscopy and X-ray
scattering

Motivation
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Particle Size & Concentrations

Courtesy: Kerry E. Kelly Univ.of Utah
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Soot Sample Generation
• Diesel test engine facility at the University of Utah
• 2-cylinder, 492 ccm, direct injection Kubota model Z482B, rated at 10.8 

kW brake horse power at 3600 rpm
• 50:50 mixture of Chevron/Phillips reference fuels T-22, U-15
• operated idle at 1500 rpm
• load conditions 1800 rpm and 3 ft-lb, and 2200 rpm, 6 ft-lb
• a reference fuel, and the reference fuel plus 1000 ppm ferrocene
• oxygenates added, such as DEC etc.

Ferrocene
Metastable molecule = iron atom sandwiched between two cyclopentadienyl rings.

Dramatic decrease of C=C bond contribution in soot; increase in aliphatics
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WAXS = Similar to X-ray 
diffraction, but diffuse scattering. 
Not crystallography, but profile 
analysis and information on 
microsctructure.

WAXS - Wide-angle X-ray Scattering
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My global statement: Diesel soot looks „graphite-like“ in WAXS.

aka XRD



9

Soot from oxygenated fuels
Deconvolution into graphitic and aliphatic contributions yields crystallite sizes and aromaticity

Systematic changes can be quantified.

Structural changes in idle / load soot more drastic
when oxygenates added.

Oxygenates + load = larger crystallites
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Ferrocene can dramatically alter soot characteristics

Diesel soot looks „graphite-like“
(this was my global statement) –
unless you add ferrocene

Changing engine settings or adding
oxygenates can alter the structure and 
thus the WAXS patterns.

Most dramatic changes observed when
ferrocene added to the fuel. Soot lacks
entirely graphitic characterstics !

No graphitic structure.
Strong aliphatic side band.
Strong mineral peaks.

Carbon, in press; doi:10.1016/j.carbon.2006.05.051

Reference soot

Ferrocene soot
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Quantitative analysis of Fe
Reference soot:     Inorganic crystalline phase hematite α-Fe2O3

Crystallites very coarse, size around 250 nm.
Source: likely engine wear-off

Ferrocene soot: Hematite α-Fe2O3, very broad peaks, → phase assignment difficult.    
Magnetite Fe3O4 could not be ruled out on basis of WAXS alone.

But Fe (L2,L3)-NEXAFS show Fe 3+ prevalent species → no magnetite !

Controversial picture. Clarification when looking at nanosize-induced polymorphs.
1 Nanoparticles have high surface energies. Nanoscale Fe-oxide with Fe 3+ likes to be „Maghemite“.

• Maghemite γ-Fe2O3 nanoparticles, 1.5 nm in large quantity from ferrocene

• Hematite α-Fe2O3 submicron particles from iron wear of engine

1 reviews on thermochemistry by A. Navrotsky, UC Davis, American Mineralogist 2003, 88, 846-854.
Detailed Moessbauer study on these samples supports WAXS+NEXAFS results, to be published soon.
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- J. Stöhr, NEXAFS Spectroscopy, Springer Verlag, 1992, New York.
- S.C.B. Myneni, Rev. Miner. Geochem. 49 (2002) 485.
- A. Braun, J. Env. Monitoring., 2005, 7(11), 1059-1065.

di Stasio, Braun. Energy & Fuels 2006, 20(1), 187 pp. 

- Element specific

• Sensitive to molecular structure

• Soot shows strong peak at 285 eV
from C=C double bonds such as 
graphite or PAH

• Surface functional groups, SOM 

• Goal: molecular fingerprint for source
attribution
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NEXAFS of idle and load diesel soot
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Scanning Transmission X-ray Micro-spectroscopy

Study of fine diesel particulate matter with scanning transmission X-ray spectroscopy.
Fuel (2004) 10 7/8 997-1000.
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Diesel exhaust PM generated with 
oxidizer has higher genotoxicity
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A. Kubatova, A Braun, in preparation
De Marini et al., Bio-assay directed fractionation and mutagenicity of  exhaust particles, Env. Health Persp. 2004, 112(8), 814-819 
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catalytic suppression of soot formation by ferrocene
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Conclusions
Adding ferrocene to diesel fuel makes exhaust less graphitic,   
→ easier to oxidize for after-treatment

Enhanced effect at higher engine speeds
Less mass, but larger number of ultrafine particulates
→ 1 higher concentration of cytotoxic surface functionalities

Ferrous nanoparticles generated in ferrocene diesel
→ 2 respiratory and genotoxicity of ferrous oxides 

Suggestion: soot from diesel plus ferrocene additive could be 
more harmful to human health than soot from diesel without 
ferrocene.

1 Boland et al. Cellular effects induced by diesel exhaust particles, Toxicology in vitro 2001, 15, 379-385.
2 Garry et al. Hematite (Fe2O3) acts by oxydative stress and potentiates benzo[a]-pyrene genotoxicity.
Mutat Res–Gen Toxicol Environ Mutag 2004;563(2):117–29.
Braun et al, CARBON, in press.
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This talk will be presented again at
EMPA Dübendorf, LA 373
14:00, Friday, August 25, 2006

Suggestion: soot from diesel + ferrocene could be more harmful to 
human health than soot from diesel without ferrocene.
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Suggested NEXAFS Peak 
Assignments for DPM Extract
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Spectra of some solid carbon samples
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Systematic and 
significant differences in 
the spectra depending on 
their origin

Soot spectra contain significant intensity from C=C bonds ~ 285 eV.
Urban PM and wood creosote spectra contain significant intensity from aliphatics ~ 287 eV.
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NEXAFS of soot, oil, and fuel
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samples, and determination of 
oxidation states.

Braun et al. Study of fine diesel particulate matter with scanning transmission X-ray spectroscopy.
Fuel (2004) 10 7/8 997-1000.
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Catalytic suppression of soot formation 
in diesel engines
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Ferrocene
Metastable molecule = iron
atom sandwiched between 
two cyclopentadienyl rings.

Dramatic decrease of C=C 
bond contribution in soot; 
increase in aliphatics

Mixing diesel fuel with ferrocene
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Soot Extracts
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Separation of diesel soot into 
solid core and volatile fractions 
with sub-critical water facilitates 
subsequent decomposition of 
NEXAFS spectra.
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Soot Residuals
Separation of diesel soot into solid core and volatile fractions
with sub-critical water facilitates subsequent decomposition of 
NEXAFS spectra.
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Potential tool for in-situ reaction studies !
(ozone + soot, etc…)

Photochemistry and De-carboxylation
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Correlation of Toxicological Results and Spectra ?
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Advantages of soft X-ray absorption over TEM-EELS - A Comparative study on diesel soot with EELS and NEXAFS; 
Carbon, 43(1), (2005) 117-124.

NEXAFS vs. EELS

EELS and NEXAFS 
have similar spectra. 
TEM microscopes often 
come with an EELS 
spectrometer. But EELS 
spectra from TEM look 
blurred, almost entirely 
useless for quantitative 
studies.280 285 290 295 300
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EELS in connection
with TEM

Diesel soot powder from oxygenated
diesel fuel under load engine

Note: this concerns not ISEELS such as the ones by Hitchcock & coworkers
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