It has been shown that small atmospheric particles can impact climate in two ways
(IPCC, 2001). First, aerosols absorb and scatter solar and terrestrial radiation in what
is known as the direct effect. For example, a decrease in surface temperature can be
correlated with an increase in atmospheric aerosol loading. This is commonly referred
to as “‘global dimming’.

Particulate matter also initiates the formation of clouds. Thus, a second impact on
climate is attributed to changes in aerosols (e.g., number density, atmospheric
residence time, chemical composition, etc.) as they indirectly affect cloud properties.
Within the indirect effect are a number of distinct aerosol-cloud interactions but, for
simplicity, they are normally separated according to liquid, ice, and mixed-phase
clouds.

Hygroscopicity and size are the determining factors in whether an aerosol will take up
gas-phase water, grow, and form a droplet within a warm cloud. Freezing is a more
complex process. Particles are known to initiate the formation of ice clouds via two
distinct mechanisms. Heterogeneous freezing can occur at temperatures as high as 0
degrees C and saturations as low as that of ice but requires the presence of rare and
chemically distinct particles known as ice nuclei. Homogeneous freezing, conversely,
is initiated by common aerosols which are aqueous mixtures of sulfates, organics,
ammonia, nitrates, and other species but can only occur at temperatures below about -
40 degrees C and saturations approaching that of liquid water.

Combustion particles play a major role in both cloud formation and climate. Black
carbon behaves in a significantly different manner than sulfate aerosols with respect
to absorption of radiation. Biomass burning aerosols have been associated with
pyrocumulus cloud formation. The role of these aerosols in ice nucleation remains
uncertain with sometimes contradictory results from laboratory studies. For these
reasons a comprehensive examination of the effect of combustion generated particles
is required for a better understanding of global climate.

Intergovernmental Panel on Climate Change, Climate Change 2001, The Scientific
Basis (2001). J. T. Houghton et al., eds. Cambridge University, Cambridge, 291-335.
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Why Study Aerosol / Cloud Interactions ?
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The height of a bar indicates a best estimate of the forcing, and the
aooompacg?/lng vertical line a likely range of values. Where no bar is present
the vertical line only indicates the range in best estimates with no likelihood.
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The Indirect Eftects of Aerosols

Cloud albedo and lifetime (negative radiative effect for warm clouds at TOA
and less precipitation); solar dimming (less radiation at the surface)
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Warm Clouds:
Ist and 2nd Effect

Semi-Direct Effects

Cold Clouds :
Glaciation/Thermo Effects

Courtesy of RP



Semi-direct Eftect

(a.k.a. Hansen Effect or‘Cloud Burning’)
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Indirect Effects : Warm Clouds

o 15t Indirect Effect (‘Twomey Effect’): more aerosols = more
cloud condensation nuclei (CCN) ? = smaller size =
more reflection = cooling

« 2nd Indirect Effect (“Albrecht Effect’): more aerosols = more
cloud drops ? = smaller size = slower fall/coagulation/ coalescence
= no precipitation = longer life = cooling

IACETH



Indirect Effects : Warm Clouds

o 15t Indirect Effect (‘Twomey Effect’): more aerosols = more
cloud condensation nucle1 (CCN) ? = smaller size =
more reflection = cooling

« 2nd Indirect Effect (“Albrecht Effect’): more aerosols = more
cloud drops ? = smaller size = slower fall/coagulation/ coalescence
= no precipitation = longer life = cooling
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How Have We Studied Warm Cloud
Effects (HTDMA)?
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Result : Fresh soot, at least, is not a good CCN. Many (most?)

IACETH combustion-generated organics are also poor CCN.
Wiedensohler et al., EAC, 2003.



Indirect Eftects : Cold Clouds

 Glaciation Effect : more aerosols = more ice nucle1 (IN;
freezing begins above ~-407) ?
= more precipitation = ?

e Thermodynamic Effect : more aerosols = more homogeneous

freezing nucle1 (HFN; freezing begins below ~-407) ?
= more/smaller cloud elements = ?
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Indirect Eftects : Cold Clouds

 Glaciation Effect : more aerosols = more ice nucle1 (IN;
freezing begins above ~-40") ?
= more precipitation = ?

e Thermodynamic Effect : more aerosols = more homogeneous

freezing nucle1 (HFN; freezing begins below ~-407) ?
= more/smaller cloud elements = ?

IACETH



How Have We Studied Cold Cloud
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Figure 1. Flow cell and location of microscope objective
(Al = aluminum and PCTFE = polychlorotrifluoroethylene).

Figure 6. A companson of our results for Lamp Black 101
(open squares) with those of DeMort et al. [1999] (sohd
tnangles). Our data points correspond to the conditions at
which water droplets were observed using soot particles
ranging in size from | to 40 pm in diameter. In these
expenments, water droplets were always observed first. If
ice did form i1t was only after the appearance of water
droplets. The results from DeMott et al. correspond to the
onset for which 1% of Lamp Black soot particles (a number

IACETH mean diameter of 240 nm) nucleated ice.
Dymarska et al., JGR, do1:10.1029/2005JD006627, 2006.



An Atmospheric Example
Flat top (‘anvil’) 1s the
delineation of turbulent
troposphere and stable
stratosphere

Side view of a ‘Overshooting’
iac  cumulonimbus cloud sometimes Occurs. ..



Biomass Burning in the Stratosphere
IO

Figure 4. Cloud infrared brightness emperatune from GOES weather satellite from June 28, 2002 05:45 UTC, showing at
the top center the convective system likely responsible for the pumping up of the smoke plume, We estimate a mininal
exient of the plume by advecting (indicated by dark yellow amow] the highest OO points (red +) measured on the flight of
July 7 {blue wace off SW Florida) i July 9 (dask yellow +), combining them with e messuned points (red +) fian July 9
{green trane) and sssuming the plume to be contiguous within the green ellipse. This €llipee was then advecied backward
; isentropically (8 = 382 K) in time to June 28 (shapes are labeled in MMDD HH format) The black lines are back

trajectories initialized =t snd sround the POAM footprint {white square), snd fhe yellow diamonds mark the position &t the
Alaskan biomass plume (SOOt, organic Eﬂfﬂ! GOES image. Red triangles comespomds to MODIS fire locations in the period June 25 through Fune 29 shove

etc.), courtesy of Japan Airlines. Up to L.
of atmospheric BC is from biomass

burning (Ramanathan et al., Science,
2001).

IACETH
Jost et al., GRL, 31, L11101, 2004



Biomass Burning in the Stratosphere
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Figure 3. Pmfile of CO versus potential temperature for
the 9 July 2002 WB-37F flight. Light shaded points indicate
data from the entire flight and dark shaded points are in the

“plume™ portion of the flight as discussed in the text.

Ray et al., JGR, 109, 18304, 2004.
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Figure 2. Single particle positive 1on mass spectrum
recorded by the PALMS instrument. (a) Mass spectrum of
a particle of known, 2 hours old forest fire plume. (b) Mass
specirum of a particle in the high CO layer. (c) Mass
spectrum of a representative, stratospheric sulfate particle.

Jostet al., GRL, 31, L11101, 2004.



Results

» Soot aerosols are VERY good absorbers of solar radiation.
Addition of soot will warm the atmosphere (direct effect).

 Soot present near cloud top will heat the local environment
and burn off the cloud. Addition of soot will warm the
atmosphere (semi-direct effect).

* Fresh soot aerosols are not good CCN, IN, or HFN. Soot 1s
not effectively removed via precipitation mechanisms and,
unless scavenged, will exist in the atmosphere for longer
than other species™ (i.e., until processed or coagulated).

 The effect of soot entering the stratosphere has not been
extensively studied.

IACETH
*Up to twice the lifetime : Lesins et al., JGR, 10.1029/2001JD000973, 2002.
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Why Study Aerosol / Cloud Interactions ?
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The height of a bar indicates a best estimate of the forcing, and the
accampanying vertical line a likely range of values. Where no bar is present
the vertical line only indicates the range in best estimates with no likelihood.
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Direct Effect of Aerosols

¥

sulfate / organic aerosol = soot aerosol =
scattering = cooling* absorbing = warming

IACETH * Global Dimming : e.g., Stanhill and Cohen, Journal of Climatology, 10, 2078-2086, 2001.



Atmospheric Effects : Milan

__ Initial Aerosol
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Figure 6. Temporal evolution of the growth factor {adld) distribution on 2 June 1998 during [0P 2. Dry
monodisperse particles (dp = 100 nm, dashed ling) were exposed to RH = 90% at 0200, 0800, 1400, and
2000 CEST (points). The solid lines are bimodal fits of the less and more hygroscopic modes. ¥ axis units
correspond to CPC counts normalized to both the diameter interval and the scan time dunng such an
interval. Lines denote a monomodal/bimodal lognormal fit.

IACETH
Baltensperger, JGR, 2002.



Atmospheric Effects
IN HEN

Organic Signal [(m ]

Collection of Ice and Snow,
Analysis of Central Particles:
* mineral dust
* metal oxides
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Result : Soot and organics are neither good IN or HFN

IACETH
Cziczo et al., GRL, 2004



Digression : Freezing Mechanisms

Ice Nuclei (IN):
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